-
-
Notifications
You must be signed in to change notification settings - Fork 344
/
hifigan.v1.yaml
180 lines (171 loc) · 9 KB
/
hifigan.v1.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# This is the configuration file for LibriTTS dataset.
# This configuration is based on HiFiGAN V1, which is
# an official configuration. But I found that the optimizer
# setting does not work well with my implementation.
# So I changed optimizer settings as follows:
# - AdamW -> Adam
# - betas: [0.8, 0.99] -> betas: [0.5, 0.9]
# - Scheduler: ExponentialLR -> MultiStepLR
# To match the shift size difference, the upsample scales
# is also modified from the original 256 shift setting.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
sampling_rate: 24000 # Sampling rate.
fft_size: 2048 # FFT size.
hop_size: 300 # Hop size.
win_length: 1200 # Window length.
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
num_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation.
fmax: 7600 # Maximum frequency in mel basis calculation.
global_gain_scale: 1.0 # Will be multiplied to all of waveform.
trim_silence: false # Whether to trim the start and end of silence.
trim_threshold_in_db: 20 # Need to tune carefully if the recording is not good.
trim_frame_size: 1024 # Frame size in trimming.
trim_hop_size: 256 # Hop size in trimming.
format: "hdf5" # Feature file format. "npy" or "hdf5" is supported.
###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_type: HiFiGANGenerator
generator_params:
in_channels: 80 # Number of input channels.
out_channels: 1 # Number of output channels.
channels: 512 # Number of initial channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
upsample_scales: [5, 5, 4, 3] # Upsampling scales.
upsample_kernel_sizes: [10, 10, 8, 6] # Kernel size for upsampling layers.
resblock_kernel_sizes: [3, 7, 11] # Kernel size for residual blocks.
resblock_dilations: # Dilations for residual blocks.
- [1, 3, 5]
- [1, 3, 5]
- [1, 3, 5]
use_additional_convs: true # Whether to use additional conv layer in residual blocks.
bias: true # Whether to use bias parameter in conv.
nonlinear_activation: "LeakyReLU" # Nonlinear activation type.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: true # Whether to apply weight normalization.
###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_type: HiFiGANMultiScaleMultiPeriodDiscriminator
discriminator_params:
scales: 3 # Number of multi-scale discriminator.
scale_downsample_pooling: "AvgPool1d" # Pooling operation for scale discriminator.
scale_downsample_pooling_params:
kernel_size: 4 # Pooling kernel size.
stride: 2 # Pooling stride.
padding: 2 # Padding size.
scale_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [15, 41, 5, 3] # List of kernel sizes.
channels: 128 # Initial number of channels.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
max_groups: 16 # Maximum number of groups in downsampling conv layers.
bias: true
downsample_scales: [4, 4, 4, 4, 1] # Downsampling scales.
nonlinear_activation: "LeakyReLU" # Nonlinear activation.
nonlinear_activation_params:
negative_slope: 0.1
follow_official_norm: true # Whether to follow the official norm setting.
periods: [2, 3, 5, 7, 11] # List of period for multi-period discriminator.
period_discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_sizes: [5, 3] # List of kernel sizes.
channels: 32 # Initial number of channels.
downsample_scales: [3, 3, 3, 3, 1] # Downsampling scales.
max_downsample_channels: 1024 # Maximum number of channels in downsampling conv layers.
bias: true # Whether to use bias parameter in conv layer."
nonlinear_activation: "LeakyReLU" # Nonlinear activation.
nonlinear_activation_params: # Nonlinear activation paramters.
negative_slope: 0.1
use_weight_norm: true # Whether to apply weight normalization.
use_spectral_norm: false # Whether to apply spectral normalization.
###########################################################
# STFT LOSS SETTING #
###########################################################
use_stft_loss: false # Whether to use multi-resolution STFT loss.
use_mel_loss: true # Whether to use Mel-spectrogram loss.
mel_loss_params:
fs: 24000
fft_size: 2048
hop_size: 300
win_length: 1200
window: "hann"
num_mels: 80
fmin: 0
fmax: 12000
log_base: null
generator_adv_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
discriminator_adv_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
use_feat_match_loss: true
feat_match_loss_params:
average_by_discriminators: false # Whether to average loss by #discriminators.
average_by_layers: false # Whether to average loss by #layers in each discriminator.
include_final_outputs: false # Whether to include final outputs in feat match loss calculation.
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_aux: 45.0 # Loss balancing coefficient for STFT loss.
lambda_adv: 1.0 # Loss balancing coefficient for adversarial loss.
lambda_feat_match: 2.0 # Loss balancing coefficient for feat match loss..
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 16 # Batch size.
batch_max_steps: 8400 # Length of each audio in batch. Make sure dividable by hop_size.
pin_memory: true # Whether to pin memory in Pytorch DataLoader.
num_workers: 2 # Number of workers in Pytorch DataLoader.
remove_short_samples: false # Whether to remove samples the length of which are less than batch_max_steps.
allow_cache: false # Whether to allow cache in dataset. If true, it requires cpu memory.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_type: Adam
generator_optimizer_params:
lr: 2.0e-4
betas: [0.5, 0.9]
weight_decay: 0.0
generator_scheduler_type: MultiStepLR
generator_scheduler_params:
gamma: 0.5
milestones:
- 200000
- 400000
- 600000
- 800000
generator_grad_norm: -1
discriminator_optimizer_type: Adam
discriminator_optimizer_params:
lr: 2.0e-4
betas: [0.5, 0.9]
weight_decay: 0.0
discriminator_scheduler_type: MultiStepLR
discriminator_scheduler_params:
gamma: 0.5
milestones:
- 200000
- 400000
- 600000
- 800000
discriminator_grad_norm: -1
###########################################################
# INTERVAL SETTING #
###########################################################
generator_train_start_steps: 1 # Number of steps to start to train discriminator.
discriminator_train_start_steps: 0 # Number of steps to start to train discriminator.
train_max_steps: 2500000 # Number of training steps.
save_interval_steps: 10000 # Interval steps to save checkpoint.
eval_interval_steps: 1000 # Interval steps to evaluate the network.
log_interval_steps: 100 # Interval steps to record the training log.
###########################################################
# OTHER SETTING #
###########################################################
num_save_intermediate_results: 4 # Number of results to be saved as intermediate results.