-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcit_tuesday_1.py
65 lines (48 loc) · 1.44 KB
/
cit_tuesday_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
1. 50 percent of the class failed the exam,
create a list of student scores that scored
under a 70.
"""
def percent_failed(scores):
"""
Returns the percentage of students that failed
the exam.
"""
return len([score for score in scores if score < 70]) / len(scores) * 100
scores = [100, 80, 90, 70, 60, 50, 40, 30, 20, 10]
print(percent_failed(scores))
"""
2. create a 6-D array and transform it to all rows
"""
import numpy as np
import random
# create a 6-D array of random numbers
array = np.array([[random.randint(0, 10) for _ in range(6)] for _ in range(6)])
def transform_array(array):
"""
Returns a new array with all rows transformed.
"""
return np.apply_along_axis(lambda x: x + 1, 0, array)
print(transform_array(array))
"""
3. create an 8-D array and reshape the array
"""
def reshape_array(array):
"""
Returns a new reshaped array.
"""
return array.reshape(2, 2, 2, 2, 2, 2)
# create 8-D array of random numbers
array = np.array([[random.randint(0, 10) for _ in range(8)] for _ in range(8)])
print(reshape_array(array))
"""
4. create a x and y array, multiply it and then reshape it to a new array
"""
x_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y_array = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
def multiply_and_reshape(x_array, y_array):
"""
Returns a new array.
"""
return (x_array * y_array).reshape(3, 3, 1)
print(multiply_and_reshape(x_array, y_array))