-
Notifications
You must be signed in to change notification settings - Fork 5.3k
/
Copy pathbatched-threaded-nnet3-cuda-online-pipeline.h
520 lines (441 loc) · 20.8 KB
/
batched-threaded-nnet3-cuda-online-pipeline.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
// cudadecoder/batched-threaded-nnet3-cuda-online-pipeline.h
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Hugo Braun
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_CUDADECODER_BATCHED_THREADED_NNET3_CUDA_ONLINE_PIPELINE_H_
#define KALDI_CUDADECODER_BATCHED_THREADED_NNET3_CUDA_ONLINE_PIPELINE_H_
#if HAVE_CUDA
#define KALDI_CUDA_DECODER_MIN_NCHANNELS_FACTOR 2
#include <atomic>
#include <thread>
#include "base/kaldi-utils.h"
#include "cudadecoder/batched-static-nnet3.h"
#include "cudadecoder/cuda-decoder.h"
#include "cudadecoder/cuda-pipeline-common.h"
#include "cudadecoder/lattice-postprocessor.h"
#include "cudadecoder/thread-pool-light.h"
#include "cudafeat/online-batched-feature-pipeline-cuda.h"
#include "feat/wave-reader.h"
#include "lat/determinize-lattice-pruned.h"
#include "nnet3/am-nnet-simple.h"
#include "nnet3/nnet-am-decodable-simple.h"
#include "nnet3/nnet-compute.h"
#include "nnet3/nnet-optimize.h"
#include "online2/online-nnet2-feature-pipeline.h"
namespace kaldi {
namespace cuda_decoder {
///\brief Online Streaming Batched Pipeline calling feature extraction, CUDA
/// light Nnet3 driver and CUDA decoder.
///
/// Can handle up to num_channels streaming audio channels in parallel. Each
/// channel is externally identified by an arbitrary 64-bit correlation ID
/// (corr_id). Receives chunks of audio (up to max_batch_size per DecodeBatch()
/// call). Will call a callback with the final lattice once the processing of
/// the final chunk is done.
///
/// For an example on how to use that pipeline, see
/// cudadecoderbin/batched-threaded-wav-nnet3-online.cc
///
/// Feature extraction can be done on GPU, or on a CPU's multithreaded pool.
///
/// Internally reuses the concept of channels and lanes from the CUDA decoder.
struct BatchedThreadedNnet3CudaOnlinePipelineConfig {
BatchedThreadedNnet3CudaOnlinePipelineConfig()
: max_batch_size(400),
num_channels(600),
num_worker_threads(-1),
determinize_lattice(true),
num_decoder_copy_threads(2),
use_gpu_feature_extraction(true),
reset_on_endpoint(false) {}
void Register(OptionsItf *po) {
po->Register("max-batch-size", &max_batch_size,
"The maximum execution batch size."
" Larger = better throughput, but slower latency.");
po->Register("num-channels", &num_channels,
"The number of parallel audio channels. This is the maximum"
" number of parallel audio channels supported by the pipeline."
" This should be larger than max_batch_size.");
po->Register("cuda-worker-threads", &num_worker_threads,
"The total number of CPU threads launched to process CPU"
" tasks. -1 = use std::hardware_concurrency().");
po->Register("determinize-lattice", &determinize_lattice,
"Determinize the lattice before output.");
po->Register("cuda-decoder-copy-threads", &num_decoder_copy_threads,
"Advanced - Number of worker threads used in the"
" decoder for the host to host copies.");
po->Register("gpu-feature-extract", &use_gpu_feature_extraction,
"Use GPU feature extraction.");
po->Register(
"reset-on-endpoint", &reset_on_endpoint,
"Reset a decoder channel when endpoint detected. Do not close stream");
feature_opts.Register(po);
decoder_opts.Register(po);
det_opts.Register(po);
compute_opts.Register(po);
}
int max_batch_size;
int num_channels;
int num_worker_threads;
bool determinize_lattice;
int num_decoder_copy_threads;
bool use_gpu_feature_extraction;
bool reset_on_endpoint;
OnlineNnet2FeaturePipelineConfig feature_opts;
CudaDecoderConfig decoder_opts;
fst::DeterminizeLatticePhonePrunedOptions det_opts;
nnet3::NnetSimpleComputationOptions compute_opts;
void CheckAndFixConfigs() {
KALDI_ASSERT(max_batch_size > 0);
// Lower bound on nchannels.
// Using strictly more than max_batch_size because channels are still used
// when the lattice postprocessing is running. We still want to run full
// max_batch_size batches in the meantime
int min_nchannels =
max_batch_size * KALDI_CUDA_DECODER_MIN_NCHANNELS_FACTOR;
num_channels = std::max(num_channels, min_nchannels);
// If not set use number of physical threads
num_worker_threads = (num_worker_threads > 0)
? num_worker_threads
: std::thread::hardware_concurrency();
}
};
class BatchedThreadedNnet3CudaOnlinePipeline {
public:
using CorrelationID = uint64_t;
typedef std::function<void(const std::string &, bool, bool)> BestPathCallback;
typedef std::function<void(CompactLattice &)> LatticeCallback;
BatchedThreadedNnet3CudaOnlinePipeline(
const BatchedThreadedNnet3CudaOnlinePipelineConfig &config,
const fst::Fst<fst::StdArc> &decode_fst,
const nnet3::AmNnetSimple &am_nnet, const TransitionModel &trans_model)
: config_(config),
max_batch_size_(config.max_batch_size),
num_channels_(std::max(max_batch_size_ * KALDI_CUDA_DECODER_MIN_NCHANNELS_FACTOR, config_.num_channels)),
channels_info_(num_channels_),
trans_model_(&trans_model),
am_nnet_(&am_nnet),
available_channels_(num_channels_),
partial_hypotheses_(NULL),
end_points_(NULL),
is_end_of_segment_(max_batch_size_),
is_end_of_stream_(max_batch_size_),
n_samples_valid_(max_batch_size_),
n_input_frames_valid_(max_batch_size_),
word_syms_(NULL) {
config_.compute_opts.CheckAndFixConfigs(am_nnet_->GetNnet().Modulus());
config_.CheckAndFixConfigs();
Initialize(decode_fst);
int num_worker_threads = config_.num_worker_threads;
thread_pool_ = std::make_unique<ThreadPoolLight>(num_worker_threads);
}
~BatchedThreadedNnet3CudaOnlinePipeline();
const BatchedThreadedNnet3CudaOnlinePipelineConfig &GetConfig() {
return config_;
}
// Called when a new utterance will be decoded w/ correlation id corr_id
// When this utterance will be done (when it will receive a chunk with
// last_chunk=true)
// If no channels are available, will wait for "wait_for" microseconds
// Returns true if a channel was available (eventually after waiting for
// up to wait_for seconds)
bool TryInitCorrID(CorrelationID corr_id, int wait_for = 0);
void SetBestPathCallback(CorrelationID corr_id,
BestPathCallback &&callback);
void SetBestPathCallback(CorrelationID corr_id,
const BestPathCallback &callback);
// Set the callback function to call with the final lattice for a given
// corr_id
void SetLatticeCallback(CorrelationID corr_id,
LatticeCallback &&callback);
void SetLatticeCallback(CorrelationID corr_id,
const LatticeCallback &callback);
// Set callback using SegmentedResultsCallback
// Able to run lattice postprocessor and generate CTM outputs
void SetLatticeCallback(CorrelationID corr_id,
SegmentedResultsCallback &&callback,
const int result_type);
void SetLatticeCallback(CorrelationID corr_id,
const SegmentedResultsCallback &callback,
const int result_type);
// Lattice postprocessor
// Applied on both lattice output or CTM output
// Optional if lattice output is used
// Must be set if a result of type RESULT_TYPE_CTM is used
void SetLatticePostprocessor(
const std::shared_ptr<LatticePostprocessor> &lattice_postprocessor);
// Receive a batch of chunks. Will decode them, then return.
// If it contains some last chunks for given utterances, it will call
// FinalizeDecoding (building the final lattice, determinize it, etc.)
// asynchronously. The callback for that utterance will then be called
//
// If partial_hypotheses is not null, generate and set the current partial
// hypotheses in partial_hypotheses The pointers in partial_hypotheses are
// only valid until the next DecodeBatch call - perform a deep copy if
// necessary
void DecodeBatch(
const std::vector<CorrelationID> &corr_ids,
const std::vector<SubVector<BaseFloat>> &wave_samples,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk,
std::vector<const std::string *> *partial_hypotheses = nullptr,
std::vector<bool> *end_point = nullptr);
void CompactWavesToMatrix(
const std::vector<SubVector<BaseFloat>> &wave_samples);
// Version providing directly the features. Only runs nnet3 & decoder
// Used when we want to provide the final ivectors (offline case)
// channels can be provided if they are known (internal use)
void DecodeBatch(
const std::vector<CorrelationID> &corr_ids,
const std::vector<BaseFloat *> &d_features,
const int features_frame_stride,
const std::vector<int> &n_input_frames_valid,
const std::vector<BaseFloat *> &d_ivectors,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk, std::vector<int> *channels = NULL,
std::vector<const std::string *> *partial_hypotheses = nullptr,
std::vector<bool> *end_point = nullptr);
// "Advanced user" version of DecodeBatch
// Can be changed without notice and break backward compatibility
// Accepts a compact Matrix of wave samples
void DecodeBatch(
const std::vector<CorrelationID> &corr_ids,
const Matrix<BaseFloat> &h_all_waveform,
const std::vector<int> &n_samples_valid,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk,
std::vector<const std::string *> *in_partial_hypotheses = nullptr,
std::vector<bool> *in_end_points = nullptr);
// Maximum number of samples per chunk
int32 GetNSampsPerChunk() const { return samples_per_chunk_; }
int32 GetNInputFramesPerChunk() const { return input_frames_per_chunk_; }
BaseFloat GetDecoderFrameShiftSeconds() const {
return decoder_frame_shift_seconds_;
}
BaseFloat GetModelFrequency() const { return model_frequency_; }
TransitionModel const &GetTransitionModel() const { return *trans_model_; }
int GetTotalNnet3RightContext() const {
return cuda_nnet3_->GetTotalNnet3RightContext();
}
// Maximum number of seconds per chunk
BaseFloat GetSecondsPerChunk() const { return seconds_per_chunk_; }
// Used for partial hypotheses
void SetSymbolTable(const fst::SymbolTable &word_syms) {
word_syms_ = &word_syms;
KALDI_ASSERT(cuda_decoder_);
cuda_decoder_->SetSymbolTable(word_syms);
}
///\brief Wait for all lattice callbacks to complete.
///
/// The method can be called after DecodeBatch(). The object's destructor
/// also calls this method to avoid a race condition between pool threads
/// running the callbacks and the instance's destruction. If you do not want
/// the destructor to hang for a long time, call this method first. It's safe
/// to call it multiple times.
void WaitForLatticeCallbacks() noexcept;
private:
// Initialize this object.
void Initialize(const fst::Fst<fst::StdArc> &decode_fst);
// Allocate and initialize data that will be used for computation
void AllocateAndInitializeData(const fst::Fst<fst::StdArc> &decode_fst);
// Reads what's needed from models, such as left and right context
void ReadParametersFromModel();
// Following functions are DecodeBatch's helpers
// Filling curr_batch_ichannels_
void ListIChannelsInBatch(const std::vector<CorrelationID> &corr_ids,
std::vector<int> *channels);
void ComputeGPUFeatureExtraction(const std::vector<int> &channels,
const Matrix<BaseFloat> &h_all_waveform,
const std::vector<int> &n_samples_valid,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk);
void ComputeCPUFeatureExtraction(const std::vector<int> &channels,
const Matrix<BaseFloat> &h_all_waveform,
const std::vector<int> &n_samples_valid,
const std::vector<bool> &is_last_chunk);
// Compute features and ivectors for the chunk curr_batch[element].
// Used when features are computed on the host (CPU) on pool threads.
void ComputeOneFeature(int element);
static void ComputeOneFeatureWrapper(void *obj, uint64_t element,
void *ignored) {
static_cast<BatchedThreadedNnet3CudaOnlinePipeline *>(obj)
->ComputeOneFeature(element);
}
void RunNnet3(const std::vector<int> &channels,
const std::vector<BaseFloat *> &d_features,
const int feature_stride,
const std::vector<int> &n_input_frames_valid,
const std::vector<bool> &is_first_chunk,
const std::vector<bool> &is_last_chunk,
const std::vector<BaseFloat *> &d_ivectors);
void RunDecoder(const std::vector<int> &channels,
const std::vector<bool> &is_first_chunk);
void InitDecoding(const std::vector<int> &channels,
const std::vector<bool> &is_first_chunk);
void RunCallbacksAndFinalize(const std::vector<CorrelationID> &corr_ids,
const std::vector<int> &channels,
const std::vector<bool> &is_last_chunk);
void RunBestPathCallbacks(const std::vector<CorrelationID> &corr_ids,
const std::vector<int> &channels);
void RunLatticeCallbacks(const std::vector<CorrelationID> &corr_ids,
const std::vector<int> &channels,
const std::vector<bool> &is_last_chunk);
// Set d_features_ptrs_ and d_ivectors_ptrs_ using channels_
void SetFeaturesPtrs();
// If an utterance is done, we call FinalizeDecoding async on
// the threadpool
// it will call the utterance's callback when done
void FinalizeDecoding(int32 ichannel);
// static wrapper for thread pool
static void FinalizeDecodingWrapper(void *obj, uint64_t ichannel64,
void *ignored) {
int32 ichannel = static_cast<int32>(ichannel64);
static_cast<BatchedThreadedNnet3CudaOnlinePipeline *>(obj)
->FinalizeDecoding(ichannel);
}
//
// Internal structs
//
struct ChannelInfo {
int segmentid;
// Set when an endpoint was detected on the previous chunk
bool must_reset_decoder;
// We need to wait for the previous chunk ConcurrentGetRawLattice to finish
// before we can reset the decoder on this channel
std::atomic_bool can_reset_decoder;
BaseFloat segment_offset_seconds;
std::queue<std::unique_ptr<CallbackWithOptions>> queue;
std::mutex mutex;
void Reset() {
segmentid = 0;
must_reset_decoder = false;
can_reset_decoder.store(false);
segment_offset_seconds = 0;
// do not reset queue - a async task might still be executing
// this is fine, even if we mix different corr_ids in the same channel
// all relevant information is stored in CallbackWithOptions
}
};
//
// Data members
//
BatchedThreadedNnet3CudaOnlinePipelineConfig config_;
int32 max_batch_size_; // extracted from config_
int32 num_channels_;
std::vector<ChannelInfo> channels_info_;
// Models
const TransitionModel *trans_model_;
const nnet3::AmNnetSimple *am_nnet_;
std::unique_ptr<OnlineNnet2FeaturePipelineInfo> feature_info_;
// Decoder channels currently available, w/ mutex
std::vector<int32> available_channels_;
std::mutex available_channels_m_;
// corr_id -> decoder channel map
std::unordered_map<CorrelationID, int32> corr_id2channel_;
// Where to store partial_hypotheses_ and end_points_ if available
std::vector<const std::string *> *partial_hypotheses_;
std::vector<bool> *end_points_;
// Used when none were provided by the API but we still need to generate
// partial hyp and endp
std::vector<const std::string *> partial_hypotheses_buf_;
std::vector<bool> end_points_buf_;
// Used to know if a chunk is the end of a segment, but not necessarly end of
// stream
std::vector<bool> is_end_of_segment_;
// End of stream (end of last segment)
std::vector<bool> is_end_of_stream_;
// The callback is called once the final lattice is ready
std::unordered_map<CorrelationID, const CallbackWithOptions>
lattice_callbacks_;
// Used for both final and partial best paths
std::unordered_map<CorrelationID, const BestPathCallback>
best_path_callbacks_;
// Lock for callbacks
std::mutex map_callbacks_m_;
// We'll call init decoding on those channels
std::vector<int32> init_decoding_list_channels_;
std::vector<int> n_samples_valid_, n_input_frames_valid_;
std::vector<std::vector<std::pair<int, const BaseFloat *>>>
all_frames_log_posteriors_;
// Channels done after current batch. We've just received
// their last chunk
std::vector<int> list_channels_last_chunk_;
std::vector<CorrelationID> list_corr_id_last_chunk_;
std::vector<std::unique_ptr<CallbackWithOptions>>
list_lattice_callbacks_last_chunk_;
// Parameters extracted from the models
int input_frames_per_chunk_;
int output_frames_per_chunk_;
BaseFloat seconds_per_chunk_;
BaseFloat decoder_frame_shift_seconds_;
BaseFloat samples_per_chunk_;
BaseFloat model_frequency_;
int32 ivector_dim_, input_dim_;
// Buffers used during computation
Matrix<BaseFloat> h_all_features_;
Matrix<BaseFloat> h_all_waveform_;
CuMatrix<BaseFloat> d_all_waveform_;
CuMatrix<BaseFloat> d_all_features_;
Matrix<BaseFloat> h_all_ivectors_;
CuVector<BaseFloat> d_all_ivectors_; // gpu pipeline uses a meta vector
CuMatrix<BaseFloat> d_all_log_posteriors_;
bool use_ivectors_;
// Used with CPU features extraction. Contains the number of CPU FE tasks
// still running
std::atomic<int> n_compute_features_not_done_;
// Number of CPU lattice postprocessing tasks still running
std::atomic<int> n_lattice_callbacks_not_done_;
// Current assignement buffers, when DecodeBatch is running
std::vector<int> channels_;
std::vector<BaseFloat *> d_features_ptrs_;
int features_frame_stride_; // stride of d_features_ptrs_
std::vector<BaseFloat *> d_ivectors_ptrs_;
// Used by CPU FE threads. Could be merged with channels_
const std::vector<int> *fe_threads_channels_;
const Matrix<BaseFloat> *fe_threads_h_all_waveform_;
const std::vector<int> *fe_threads_n_samples_valid_;
std::unique_ptr<OnlineBatchedFeaturePipelineCuda> gpu_feature_pipeline_;
std::unique_ptr<BatchedStaticNnet3> cuda_nnet3_;
// Feature pipelines, associated to a channel
// Only used if feature extraction is run on the CPU
std::vector<std::unique_ptr<OnlineNnet2FeaturePipeline>> feature_pipelines_;
// Ordering of the cuda_fst_ w.r.t. thread_pool_ and the decoder is important:
// order of destruction is bottom-up, opposite to the order of construction.
// We want the FST object, which is entirely passive and only frees device
// FST representation when destroyed, to survive both the thread pool and the
// decoder, which both may perform pending work during destruction. Since no
// new work may be fed into this object while it is being destroyed, the
// relative order of the latter two is unimportant, but just in case, FST must
// stay around until the other two are positively quiescent.
// HCLG graph. CudaFst is a host object, but owns pointers to the data stored
// in GPU memory.
std::unique_ptr<CudaFst> cuda_fst_;
// Use to postprocess lattices/generate CTM outputs
std::shared_ptr<LatticePostprocessor> lattice_postprocessor_;
// The thread pool receives data from device and post-processes it. This class
// destructor blocks until the thread pool is drained of work items.
std::unique_ptr<ThreadPoolLight> thread_pool_;
// The decoder owns thread(s) that reconstruct lattices transferred from the
// device in a compacted form as arrays with offsets instead of pointers.
std::unique_ptr<CudaDecoder> cuda_decoder_;
// Used for debugging
const fst::SymbolTable *word_syms_;
// Used when printing to stdout for debugging purposes
std::mutex stdout_m_;
};
} // namespace cuda_decoder
} // namespace kaldi
#endif // HAVE_CUDA
#endif // KALDI_CUDADECODER_BATCHED_THREADED_NNET3_CUDA_ONLINE_PIPELINE_H_