-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
132 lines (119 loc) · 4.36 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import logging
import argparse
from argparse import ArgumentParser
import json
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from Model import Model
from trackers import MetricManager
import math
from pathlib import Path
import os
if __name__ == '__main__':
# Parsing Arguments
parser = ArgumentParser()
parser.add_argument('--config', default=None, type=str, required=True)
parser.add_argument('--index', default=0, type=int, required=False)
parser.add_argument('--num_train_epochs', default=15,
type=int, required=False)
parser.add_argument('--check_val_every_n_epoch',
default=1, type=int, required=False)
arg_ = parser.parse_args()
# Getting configurations
config_path = arg_.config
with open(config_path) as config_file:
config = json.load(config_file)
config = argparse.Namespace(**config)
config.data_index = int(arg_.index)
config.wandb_run_name = config.wandb_run_name + str(config.data_index)
# Init configs that are not given
if 'seed' not in config:
seed = 42
if 'cache_dir' not in config:
config.cache_dir = os.path.join(
Path.home(), '.cache/huggingface/datasets')
if 'train_sets' not in config:
config.train_sets = ""
if 'valid_sets' not in config:
config.valid_sets = []
if 'valid_subset_path' not in config:
config.valid_subset_path = None
if 'valid_type_path' not in config:
config.valid_type_path = None
if 'learning_rate' not in config:
config.learning_rate = 5e-5
if 'loss_fn' not in config:
config.loss_fn = 'negative'
if 'gradient_accumulation_steps' not in config:
config.gradient_accumulation_steps = 1
if 'num_train_epochs' not in config:
config.num_train_epochs = arg_.num_train_epochs
if 'num_workers' not in config:
config.num_workers = 0
if 'wandb_log' not in config:
config.wandb_log = False
if 'fp16' not in config:
config.fp16 = False
if 'check_validation_only' not in config:
config.check_validation_only = False
if 'check_val_every_n_epoch' not in config:
config.check_val_every_n_epoch = arg_.check_val_every_n_epoch
if 'tokenizer' not in config:
config.tokenizer_name_or_path = config.model_name_or_path
if 'target_length' not in config:
config.target_length = None
if 'min_train_epochs' not in config:
config.min_train_epochs = 0
if 'limit_val_samples' not in config:
config.limit_val_samples = 0
if 'save_checkpoint' not in config:
config.save_checkpoint = False
if 'decoding_strategy' not in config:
config.decoding_strategy = 'greedy'
pl.seed_everything(seed, workers=True)
# Set console logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'[%(levelname)s] %(asctime)s (%(filename)s:%(lineno)d) : %(message)s'
)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
callbacks = []
train_set_name = config.train_set.split('/')[-1].split('.')[0]
metric_averager = MetricManager()
callbacks.append(metric_averager)
# Set wandb logger
if config.wandb_log:
wandb_logger = WandbLogger(
project=config.wandb_project,
name=config.wandb_run_name)
else:
wandb_logger = None
if config.limit_val_samples:
limit_val_batches = math.ceil(
config.limit_val_samples / (config.eval_batch_size * config.ngpu))
else:
limit_val_batches = None
# Setting for pytorch lightning trainer
train_params = dict(
accumulate_grad_batches=config.gradient_accumulation_steps,
accelerator='gpu',
devices=config.ngpu,
max_epochs=int(config.num_train_epochs),
precision=16 if config.fp16 else 32,
check_val_every_n_epoch=config.check_val_every_n_epoch,
enable_checkpointing=config.save_checkpoint,
logger=wandb_logger,
num_sanity_val_steps=0,
log_every_n_steps=1,
limit_val_batches=limit_val_batches,
callbacks=callbacks
)
trainer = pl.Trainer(**train_params)
model = Model(config)
if config.check_validation_only:
trainer.validate(model)
else:
trainer.fit(model)