-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathAVL.cpp
274 lines (223 loc) · 7.1 KB
/
AVL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// An AVL tree node
struct node {
int key;
struct node *left;
struct node *right;
int height;
};
// A utility function to get height of the tree
int height(struct node *N) {
if (N == NULL)
return 0;
return N->height;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct node* newNode(int key) {
struct node* node = (struct node*)malloc(sizeof(struct node));
node->key = key;
node->left = node->right = NULL;
node->height = 1; // new node is initially added at leaf
return node;
}
/*
T1, T2, T3 and T4 are subtrees.
z y
/ \ / \
y T4 Right Rotate (z) x z
/ \ - - - - - - - - -> / \ / \
x T3 T1 T2 T3 T4
/ \
T1 T2
*/
struct node *rightRotate(struct node *z) {
struct node *y = z->left;
struct node *T3 = y->right;
// Perform rotation
y->right = z;
z->left = T3;
// Update heights
z->height = max(height(z->left), height(z->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
/*
z y
/ \ / \
T1 y Left Rotate(z) z x
/ \ - - - - - - - -> / \ / \
T2 x T1 T2 T3 T4
/ \
T3 T4
*/
struct node *leftRotate(struct node *z) {
struct node *y = z->right;
struct node *T2 = y->left;
// Perform rotation
y->left = z;
z->right = T2;
// Update heights
z->height = max(height(z->left), height(z->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct node *N) {
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Time: O(logn)
struct node* insert(struct node* node, int key) {
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else
node->right = insert(node->right, key);
/* 2. Update height of this ancestor node */
node->height = max(height(node->left), height(node->right)) + 1;
/* 3. Get the balance factor of this ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 and key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 and key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 and key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 and key < node -> right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
/* Given a non-empty binary search tree, return the node with minimum
key value found in that tree. Note that the entire tree does not
need to be searched. */
struct node * minValueNode(struct node* node) {
struct node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL)
current = current->left;
return current;
}
struct node* deleteNode(struct node* root, int key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL)
return root;
// If the key to be deleted is smaller than the root's key,
// then it lies in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater than the root's key,
// then it lies in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key is same as root's key, then This is the node
// to be deleted
else {
// node with only one child or no child
if( (root->left == NULL) or (root->right == NULL) ) {
struct node *temp = root->left ? root->left : root->right;
// No child case
if(temp == NULL) {
temp = root;
root = NULL;
} else // One child case
*root = *temp; // Copy the contents of the non-empty child
free(temp);
} else {
// node with two children: Get the inorder successor (smallest
// in the right subtree)
struct node* temp = minValueNode(root->right);
// Copy the inorder successor's data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->key);
}
}
// If the tree had only one node then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = max(height(root->left), height(root->right)) + 1;
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether
// this node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 and getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 and getBalance(root->left) < 0) {
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 and getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 and getBalance(root->right) > 0) {
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// A utility function to print preorder traversal of the tree.
// The function also prints height of every node
void preOrder(struct node *root) {
if(root != NULL) {
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Drier program to test above function*/
int main(void) {
struct node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
/* The constructed AVL Tree would be
9
/ \
1 10
/ \ \
0 5 11
/ / \
-1 2 6
*/
preOrder(root);
root = deleteNode(root, 10);
/* The AVL Tree after deletion of 10
1
/ \
0 9
/ / \
-1 5 11
/ \
2 6
*/
printf("\nPre order traversal after deletion of 10 \n");
preOrder(root);
return 0;
}