forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reachable-nodes-in-subdivided-graph.py
41 lines (37 loc) · 1.42 KB
/
reachable-nodes-in-subdivided-graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Time: O((|E| + |V|) * log|V|) = O(|E| * log|V|),
# if we can further to use Fibonacci heap, it would be O(|E| + |V| * log|V|)
# Space: O(|E| + |V|) = O(|E|)
import collections
import heapq
class Solution(object):
def reachableNodes(self, edges, M, N):
"""
:type edges: List[List[int]]
:type M: int
:type N: int
:rtype: int
"""
adj = [[] for _ in xrange(N)]
for u, v, w in edges:
adj[u].append((v, w))
adj[v].append((u, w))
min_heap = [(0, 0)]
best = collections.defaultdict(lambda: float("inf"))
best[0] = 0
count = collections.defaultdict(lambda: collections.defaultdict(int))
result = 0
while min_heap:
curr_total, u = heapq.heappop(min_heap) # O(|V|*log|V|) in total
if best[u] < curr_total:
continue
result += 1
for v, w in adj[u]:
count[u][v] = min(w, M-curr_total)
next_total = curr_total+w+1
if next_total <= M and next_total < best[v]:
best[v] = next_total
heapq.heappush(min_heap, (next_total, v)) # binary heap O(|E|*log|V|) in total
# Fibonacci heap O(|E|) in total
for u, v, w in edges:
result += min(w, count[u][v]+count[v][u])
return result