forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimize-rounding-error-to-meet-target.py
56 lines (49 loc) · 1.91 KB
/
minimize-rounding-error-to-meet-target.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Time: O(n) on average
# Space: O(n)
import math
import random
class Solution(object):
def minimizeError(self, prices, target):
"""
:type prices: List[str]
:type target: int
:rtype: str
"""
def kthElement(nums, k, compare=lambda a, b: a < b):
def PartitionAroundPivot(left, right, pivot_idx, nums, compare):
new_pivot_idx = left
nums[pivot_idx], nums[right] = nums[right], nums[pivot_idx]
for i in xrange(left, right):
if compare(nums[i], nums[right]):
nums[i], nums[new_pivot_idx] = nums[new_pivot_idx], nums[i]
new_pivot_idx += 1
nums[right], nums[new_pivot_idx] = nums[new_pivot_idx], nums[right]
return new_pivot_idx
left, right = 0, len(nums) - 1
while left <= right:
pivot_idx = random.randint(left, right)
new_pivot_idx = PartitionAroundPivot(left, right, pivot_idx, nums, compare)
if new_pivot_idx == k:
return
elif new_pivot_idx > k:
right = new_pivot_idx - 1
else: # new_pivot_idx < k.
left = new_pivot_idx + 1
errors = []
lower, upper = 0, 0
for i, p in enumerate(map(float, prices)):
lower += int(math.floor(p))
upper += int(math.ceil(p))
if p != math.floor(p):
errors.append(p-math.floor(p))
if not lower <= target <= upper:
return "-1"
lower_round_count = upper-target
kthElement(errors, lower_round_count)
result = 0.0
for i in xrange(len(errors)):
if i < lower_round_count:
result += errors[i]
else:
result += 1.0-errors[i]
return "{:.3f}".format(result)