forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfalling-squares.py
274 lines (243 loc) · 9.24 KB
/
falling-squares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Time: O(n^2), could be improved to O(nlogn) in cpp by ordered map (bst)
# Space: O(n)
import bisect
class Solution(object):
def fallingSquares(self, positions):
result = []
pos = [-1]
heights = [0]
maxH = 0
for left, side in positions:
l = bisect.bisect_right(pos, left)
r = bisect.bisect_left(pos, left+side)
high = max(heights[l-1:r] or [0]) + side
pos[l:r] = [left, left+side] # Time: O(n)
heights[l:r] = [high, heights[r-1]] # Time: O(n)
maxH = max(maxH, high)
result.append(maxH)
return result
class SegmentTree(object):
def __init__(self, N,
query_fn=min,
update_fn=lambda x, y: y,
default_val=float("inf")):
self.N = N
self.H = (N-1).bit_length()
self.query_fn = query_fn
self.update_fn = update_fn
self.default_val = default_val
self.tree = [default_val] * (2 * N)
self.lazy = [None] * N
def __apply(self, x, val):
self.tree[x] = self.update_fn(self.tree[x], val)
if x < self.N:
self.lazy[x] = self.update_fn(self.lazy[x], val)
def update(self, L, R, h):
def pull(x):
while x > 1:
x //= 2
self.tree[x] = self.query_fn(self.tree[x*2], self.tree[x*2 + 1])
if self.lazy[x] is not None:
self.tree[x] = self.update_fn(self.tree[x], self.lazy[x])
L += self.N
R += self.N
L0, R0 = L, R
while L <= R:
if L & 1:
self.__apply(L, h)
L += 1
if R & 1 == 0:
self.__apply(R, h)
R -= 1
L //= 2
R //= 2
pull(L0)
pull(R0)
def query(self, L, R):
def push(x):
n = 2**self.H
while n != 1:
y = x // n
if self.lazy[y] is not None:
self.__apply(y*2, self.lazy[y])
self.__apply(y*2 + 1, self.lazy[y])
self.lazy[y] = None
n //= 2
result = self.default_val
if L > R:
return result
L += self.N
R += self.N
push(L)
push(R)
while L <= R:
if L & 1:
result = self.query_fn(result, self.tree[L])
L += 1
if R & 1 == 0:
result = self.query_fn(result, self.tree[R])
R -= 1
L //= 2
R //= 2
return result
def data(self):
showList = []
for i in xrange(self.N):
showList.append(self.query(i, i))
return showList
class SegmentTree2(object):
def __init__(self, nums,
query_fn=min,
update_fn=lambda x, y: y,
default_val=float("inf")):
"""
initialize your data structure here.
:type nums: List[int]
"""
N = len(nums)
self.__original_length = N
self.__tree_length = 2**(N.bit_length() + (N&(N-1) != 0))-1
self.__query_fn = query_fn
self.__update_fn = update_fn
self.__default_val = default_val
self.__tree = [default_val for _ in range(self.__tree_length)]
self.__lazy = [None for _ in range(self.__tree_length)]
self.__constructTree(nums, 0, self.__original_length-1, 0)
def update(self, i, j, val):
self.__updateTree(val, i, j, 0, self.__original_length-1, 0)
def query(self, i, j):
return self.__queryRange(i, j, 0, self.__original_length-1, 0)
def __constructTree(self, nums, left, right, idx):
if left > right:
return
if left == right:
self.__tree[idx] = self.__update_fn(self.__tree[idx], nums[left])
return
mid = left + (right-left)//2
self.__constructTree(nums, left, mid, idx*2 + 1)
self.__constructTree(nums, mid+1, right, idx*2 + 2)
self.__tree[idx] = self.__query_fn(self.__tree[idx*2 + 1], self.__tree[idx*2 + 2])
def __apply(self, left, right, idx, val):
self.__tree[idx] = self.__update_fn(self.__tree[idx], val)
if left != right:
self.__lazy[idx*2 + 1] = self.__update_fn(self.__lazy[idx*2 + 1], val)
self.__lazy[idx*2 + 2] = self.__update_fn(self.__lazy[idx*2 + 2], val)
def __updateTree(self, val, range_left, range_right, left, right, idx):
if left > right:
return
if self.__lazy[idx] is not None:
self.__apply(left, right, idx, self.__lazy[idx])
self.__lazy[idx] = None
if range_left > right or range_right < left:
return
if range_left <= left and right <= range_right:
self.__apply(left, right, idx, val)
return
mid = left + (right-left)//2
self.__updateTree(val, range_left, range_right, left, mid, idx*2 + 1)
self.__updateTree(val, range_left, range_right, mid+1, right, idx*2 + 2)
self.__tree[idx] = self.__query_fn(self.__tree[idx*2 + 1],
self.__tree[idx*2 + 2])
def __queryRange(self, range_left, range_right, left, right, idx):
if left > right:
return self.__default_val
if self.__lazy[idx] is not None:
self.__apply(left, right, idx, self.__lazy[idx])
self.__lazy[idx] = None
if right < range_left or left > range_right:
return self.__default_val
if range_left <= left and right <= range_right:
return self.__tree[idx]
mid = left + (right-left)//2
return self.__query_fn(self.__queryRange(range_left, range_right, left, mid, idx*2 + 1),
self.__queryRange(range_left, range_right, mid + 1, right, idx*2 + 2))
# Time: O(nlogn)
# Space: O(n)
# Segment Tree solution.
class Solution2(object):
def fallingSquares(self, positions):
index = set()
for left, size in positions:
index.add(left)
index.add(left+size-1)
index = sorted(list(index))
tree = SegmentTree(len(index), max, max, 0)
# tree = SegmentTree2([0]*len(index), max, max, 0)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = tree.query(L, R) + size
tree.update(L, R, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n * sqrt(n))
# Space: O(n)
class Solution3(object):
def fallingSquares(self, positions):
def query(heights, left, right, B, blocks, blocks_read):
result = 0
while left % B and left <= right:
result = max(result, heights[left], blocks[left//B])
left += 1
while right % B != B-1 and left <= right:
result = max(result, heights[right], blocks[right//B])
right -= 1
while left <= right:
result = max(result, blocks[left//B], blocks_read[left//B])
left += B
return result
def update(heights, left, right, B, blocks, blocks_read, h):
while left % B and left <= right:
heights[left] = max(heights[left], h)
blocks_read[left//B] = max(blocks_read[left//B], h)
left += 1
while right % B != B-1 and left <= right:
heights[right] = max(heights[right], h)
blocks_read[right//B] = max(blocks_read[right//B], h)
right -= 1
while left <= right:
blocks[left//B] = max(blocks[left//B], h)
left += B
index = set()
for left, size in positions:
index.add(left)
index.add(left+size-1)
index = sorted(list(index))
W = len(index)
B = int(W**.5)
heights = [0] * W
blocks = [0] * (B+2)
blocks_read = [0] * (B+2)
max_height = 0
result = []
for left, size in positions:
L, R = bisect.bisect_left(index, left), bisect.bisect_left(index, left+size-1)
h = query(heights, L, R, B, blocks, blocks_read) + size
update(heights, L, R, B, blocks, blocks_read, h)
max_height = max(max_height, h)
result.append(max_height)
return result
# Time: O(n^2)
# Space: O(n)
class Solution4(object):
def fallingSquares(self, positions):
"""
:type positions: List[List[int]]
:rtype: List[int]
"""
heights = [0] * len(positions)
for i in xrange(len(positions)):
left_i, size_i = positions[i]
right_i = left_i + size_i
heights[i] += size_i
for j in xrange(i+1, len(positions)):
left_j, size_j = positions[j]
right_j = left_j + size_j
if left_j < right_i and left_i < right_j: # intersect
heights[j] = max(heights[j], heights[i])
result = []
for height in heights:
result.append(max(result[-1], height) if result else height)
return result