- Tian R, Wang C, Hu J, et al. MFSTGN: a multi-scale spatial-temporal fusion graph network for traffic prediction[J]. Applied Intelligence, 2023: 1-20. Link
- Sun X, Wang X, Huang B, et al. Multidirectional short-term traffic volume prediction based on spatiotemporal networks[J]. Applied Intelligence, 2023: 1-16. Link Code
- Wu J, Fu J, Ji H, et al. Graph convolutional dynamic recurrent network with attention for traffic forecasting[J]. Applied Intelligence, 2023: 1-15. Link
- Wu J, Li X, He D, et al. Learning spatial-temporal dynamics and interactivity for short-term passenger flow prediction in urban rail transit[J]. Applied Intelligence, 2023: 1-22. Link
- Huang X, Jiang Y, Tang J. MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion[J]. Applied Intelligence, 2023: 1-12. Link
- Wu J L, Lu M, Wang C Y. Forecasting metro rail transit passenger flow with multiple-attention deep neural networks and surrounding vehicle detection devices[J]. Applied Intelligence, 2023: 1-16. Link Code
- Han Y, Zhao S, Deng H, et al. Principal graph embedding convolutional recurrent network for traffic flow prediction[J]. Applied Intelligence, 2023: 1-15. Link Code