- Li H, Yang S, Song Y, et al. Spatial dynamic graph convolutional network for traffic flow forecasting[J]. Applied Intelligence, 2022: 1-13. Link
- Liu J, Kang Y, Li H, et al. STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting[J]. Applied Intelligence, 2022: 1-17. Link Code
- Kong X, Wei X, Zhang J, et al. JointGraph: joint pre-training framework for traffic forecasting with spatial-temporal gating diffusion graph attention network[J]. Applied Intelligence, 2022: 1-18. Link
- Huang X, Tang J, Yang X, et al. A time-dependent attention convolutional LSTM method for traffic flow prediction[J]. Applied Intelligence, 2022: 1-16. Link Code
- Liao L, Hu Z, Zheng Y, et al. An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention[J]. Applied Intelligence, 2022: 1-13. Link
- Wei Q, Qiu Y, Wen Y. Cluster-based spatiotemporal dual self-adaptive network for short-term subway passenger flow forecasting[J]. Applied Intelligence, 2022: 1-16. Link
- Zeng H, Peng Z, Huang X H, et al. Deep spatio-temporal neural network based on interactive attention for traffic flow prediction[J]. Applied Intelligence, 2022: 1-12. Link
- Li Z, Zhang Y, Guo D, et al. Long-term traffic forecasting based on adaptive graph cross strided convolution network[J]. Applied Intelligence, 2022: 1-15. Link
- Alghamdi D, Basulaiman K, Rajgopal J. Multi-stage deep probabilistic prediction for travel demand[J]. Applied Intelligence, 2022: 1-18. Link
- Yang J, Xie F, Yang J, et al. Spatial-temporal correlated graph neural networks based on neighborhood feature selection for traffic data prediction[J]. Applied Intelligence, 2022: 1-16. Link
- Ni Q, Zhang M. STGMN: A gated multi-graph convolutional network framework for traffic flow prediction[J]. Applied Intelligence, 2022: 1-14. Link
- Xing J, Kong X, Xing W, et al. STGs: construct spatial and temporal graphs for citywide crowd flow prediction[J]. Applied Intelligence, 2022: 1-10. Link
- Bhanu M, Priya S, Moreira J M, et al. ST-AGP: Spatio-Temporal aggregator predictor model for multi-step taxi-demand prediction in cities[J]. Applied Intelligence, 2022: 1-23. Link
- Liao W, Zeng B, Liu J, et al. Taxi demand forecasting based on the temporal multimodal information fusion graph neural network[J]. Applied Intelligence, 2022: 1-14. Link
- Dai G, Kong W, Liu Y, et al. Multi-perspective convolutional neural networks for citywide crowd flow prediction[J]. Applied Intelligence, 2022: 1-15. Link
- Wu Y, Zhang H, Li C, et al. Urban ride-hailing demand prediction with multi-view information fusion deep learning framework[J]. Applied Intelligence, 2022: 1-19. Link