Skip to content

Latest commit

 

History

History
8 lines (8 loc) · 2.09 KB

IJCNN.md

File metadata and controls

8 lines (8 loc) · 2.09 KB
  • Hermes L, Hammer B, Melnik A, et al. A Graph-based U-Net Model for Predicting Traffic in unseen Cities[C]. 2022 International Joint Conference on Neural Networks (IJCNN), 2022. Link Code
  • Feng Y, Han F, Zhao S. A Graph Convolutional Stacked Temporal Attention Neural Network for Traffic Flow Forecasting[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-7. Link
  • Li S, Ge L, Lin Y, et al. Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-8. Link
  • Cao S, Wu L, Zhang R, et al. Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-8. Link
  • Hu J, Lin X, Wang C. MGCN: Dynamic Spatio-Temporal Multi-Graph Convolutional Neural Network[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-9. Link
  • Lin Y, Ge L, Li S, et al. Prior Knowledge and Data-Driven Based Long-and Short-Term Fusion Network for Traffic Forecasting[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-8. Link
  • Das D. UApredictor: Urban Anomaly Prediction from Spatial-Temporal Data using Graph Transformer Neural Network[C]//2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022: 1-8. Link
  • Tang J, Qian T, Liu S, et al. Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting[C]. IJCNN, 2022. Link