- Huang X, Ye Y, Wang C, et al. A multi-mode traffic flow prediction method with clustering based attention convolution LSTM[J]. Applied Intelligence, 2021: 1-14. Link
- Kong X, Zhang J, Wei X, et al. Adaptive spatial-temporal graph attention networks for traffic flow forecasting[J]. Applied Intelligence, 2021: 1-17. Link
- Wang J, Zhu W, Sun Y, et al. An effective dynamic spatiotemporal framework with external features information for traffic prediction[J]. Applied Intelligence, 2021, 51(6): 3159-3173. Link
- Tu Y, Lin S, Qiao J, et al. Deep traffic congestion prediction model based on road segment grouping[J]. Applied Intelligence, 2021: 1-23. Link
- Khodabandelou G, Kheriji W, Selem F H. Link traffic speed forecasting using convolutional attention-based gated recurrent unit[J]. Applied Intelligence, 2021, 51(4): 2331-2352. Link
- Zhang Y, Yang Y, Zhou W, et al. Multi-city traffic flow forecasting via multi-task learning[J]. Applied Intelligence, 2021: 1-19. Link
- Terroso-Sáenz F, Muñoz A. Nation-wide human mobility prediction based on graph neural networks[J]. Applied Intelligence, 2021: 1-17. Link Code
- Wang B, Tan Y, Jia W. TL-FCM: A hierarchical prediction model based on two-level fuzzy c-means clustering for bike-sharing system[J]. Applied Intelligence, 2021: 1-18. Link
- Xu C, Zhang A, Xu C, et al. Traffic speed prediction: spatiotemporal convolution network based on long-term, short-term and spatial features[J]. Applied Intelligence, 2021: 1-19. Link Code