- Luo Z, Zhang Y, Li L, et al. A hybrid method for predicting traffic congestion during peak hours in the subway system of Shenzhen[J]. Sensors, 2020, 20(1): 150. Link
- Jia H, Luo H, Wang H, et al. ADST: Forecasting metro flow using attention-based deep spatial-temporal networks with multi-task learning[J]. Sensors, 2020, 20(16): 4574. Link Code
- Culita J, Caramihai S I, Dumitrache I, et al. An Hybrid Approach for Urban Traffic Prediction and Control in Smart Cities[J]. Sensors, 2020, 20(24): 7209. Link
- Sun S, Wu H, Xiang L. City-wide traffic flow forecasting using a deep convolutional neural network[J]. Sensors, 2020, 20(2): 421. Link
- Asad S M, Ahmad J, Hussain S, et al. Mobility prediction-based optimisation and encryption of passenger traffic-flows using machine learning[J]. Sensors, 2020, 20(9): 2629. Link
- Chen Z, Zhao B, Wang Y, et al. Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network[J]. Sensors, 2020, 20(13): 3776. Link
- Zahid M, Chen Y, Jamal A, et al. Short term traffic state prediction via hyperparameter optimization based classifiers[J]. Sensors, 2020, 20(3): 685. Link