- Ouyang Q, Lv Y, Ma J, et al. An LSTM-Based Method Considering History and Real-Time Data for Passenger Flow Prediction[J]. Applied Sciences, 2020, 10(11): 3788. Link
- Liu Z, Chen H, Sun X, et al. Data-driven real-time online taxi-hailing demand forecasting based on machine learning method[J]. Applied Sciences, 2020, 10(19): 6681. Link
- Ge L, Li S, Wang Y, et al. Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction[J]. Applied Sciences, 2020, 10(4): 1509. Link
- Lu Z, Xia J, Wang M, et al. Short-term traffic flow forecasting via multi-regime modeling and ensemble learning[J]. Applied Sciences, 2020, 10(1): 356. Link
- Ul Abideen Z, Sun H, Yang Z, et al. The Deep 3D Convolutional Multi-Branching Spatial-Temporal-Based Unit Predicting Citywide Traffic Flow[J]. Applied Sciences, 2020, 10(21): 7778. Link
- Ryu S, Kim D, Kim J. Weather-aware long-range traffic forecast using multi-module deep neural network[J]. Applied Sciences, 2020, 10(6): 1938. Link