-
Gu Y, Lu W, Xu X, et al. An improved Bayesian combination model for short-term traffic prediction with deep learning[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(3): 1332-1342. Link
-
Liu Y, Liu Z, Lyu C, et al. Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction[J]//IEEE transactions on intelligent transportation systems. 2019, 21(11): 4798-4807. Link
-
Liu L, Qiu Z, Li G, et al. Contextualized spatial–temporal network for taxi origin-destination demand prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 20(10): 3875-3887. Link Code
-
Jenelius E. Data-driven metro train crowding prediction based on real-time load data[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(6): 2254-2265. Link
-
Zheng Z, Yang Y, Liu J, et al. Deep and embedded learning approach for traffic flow prediction in urban informatics[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 20(10): 3927-3939. Link
-
Du B, Peng H, Wang S, et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(3): 972-985. Link Code
-
Guo S, Lin Y, Li S, et al. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 20(10): 3913-3926. Link Code
-
Zheng C, Fan X, Wen C, et al. Deepstd: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(9): 3744-3755. Link
-
Zhang K, Liu Z, Zheng L. Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning[J]//IEEE transactions on intelligent transportation systems. 2019, 21(4): 1480-1490. Link
-
Li Z, Zheng Z, Washington S. Short-term traffic flow forecasting: a component-wise gradient boosting approach with hierarchical reconciliation[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(12): 5060-5072. Link
-
Zhou L, Zhang S, Yu J, et al. Spatial–Temporal Deep Tensor Neural Networks for Large-Scale Urban Network Speed Prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(9): 3718-3729. Link
-
Liu Y, Lyu C, Khadka A, et al. Spatio-temporal ensemble method for car-hailing demand prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(12): 5328-5333. Link
-
Yu H, Chen X, Li Z, et al. Taxi-based mobility demand formulation and prediction using conditional generative adversarial network-driven learning approaches[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 20(10): 3888-3899. Link
-
Zhao L, Song Y, Zhang C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(9): 3848-3858. Link Code
-
Cui Z, Henrickson K, Ke R, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]//IEEE Transactions on Intelligent Transportation Systems. 2019, 21(11): 4883-4894. Link
-
Zhang Y, Wang S, Chen B, et al. Trafficgan: Network-scale deep traffic prediction with generative adversarial nets[J]//IEEE Transactions on Intelligent Transportation Systems. 2019. Link