-
Ran X, Shan Z, Fang Y, et al. A convolution component-based method with attention mechanism for travel-time prediction[J]//Sensors. 2019, 19(9): 2063. Link
-
Wei W, Wu H, Ma H. An autoencoder and LSTM-based traffic flow prediction method[J]//Sensors. 2019, 19(13): 2946. Link
-
Gallo M, De Luca G, D’Acierno L, et al. Artificial neural networks for forecasting passenger flows on metro lines[J]//Sensors. 2019, 19(15): 3424. Link
-
Cristóbal T, Padrón G, Quesada-Arencibia A, et al. Bus travel time prediction model based on profile similarity[J]//Sensors. 2019, 19(13): 2869. Link
-
Zhang S, Yao Y, Hu J, et al. Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks[J]//Sensors. 2019, 19(10): 2229. Link
-
Ji B, Hong EJ. Deep-learning-based real-time road traffic prediction using long-term evolution access data[J]//Sensors. 2019, 19(23): 5327. Link
-
Zhu D, Shen G, Liu D, et al. FCG-aspredictor: An approach for the prediction of average speed of road segments with floating car GPS data[J]//Sensors. 2019, 19(22): 4967. Link
-
Tampubolon H, Yang CL, Chan AS, et al. Optimized CapsNet for traffic jam speed prediction using mobile sensor data under urban swarming transportation[J]//Sensors. 2019, 19(23): 5277. Link
-
Terroso-Saenz F, Muñoz A, Cecilia JM. QUADRIVEN: A framework for qualitative taxi demand prediction based on time-variant online social network data analysis[J]//Sensors. 2019, 19(22): 4882. Link
-
Aqib M, Mehmood R, Alzahrani A, et al. Smarter traffic prediction using big data, in-memory computing, deep learning and GPUs[J]//Sensors. 2019, 19(9): 2206. Link
-
Liu D, Tang L, Shen G, et al. Traffic speed prediction: An attention-based method[J]//Sensors. 2019, 19(18): 3836. Link