Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sampler choices for finetuned stable diffusion model #64

Open
dioxin1997 opened this issue Feb 7, 2023 · 5 comments
Open

Sampler choices for finetuned stable diffusion model #64

dioxin1997 opened this issue Feb 7, 2023 · 5 comments

Comments

@dioxin1997
Copy link

The stable diffusion model finetuned with Pokemon dataset works well with DDIM sampler but works poorly with PLMS sampler.

@dioxin1997
Copy link
Author

00059
00058
The first one is using ddim and second is using plms, all other params are the same.

@dioxin1997
Copy link
Author

I used "512-base-ema.ckpt" of stable diffusion v2 and parameterization: "v" in the finetuning.

@justinpinkney
Copy link
Owner

That is interesting, not something I've looked into. I do remember some anecdotal evidence that dream booth worked better with ddim too.

@lvsi-qi
Copy link

lvsi-qi commented Apr 22, 2023

这很有趣,不是我研究过的东西。我确实记得一些轶事证据表明,梦想展位在 ddim 中也效果更好。

Traceback (most recent call last):
File "/content/stable-diffusion/main.py", line 923, in
raise err
File "/content/stable-diffusion/main.py", line 905, in
trainer.fit(model, data)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 553, in fit
self._run(model)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 918, in _run
self._dispatch()
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _dispatch
self.accelerator.start_training(self)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 996, in run_stage
return self._run_train()
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1045, in _run_train
self.fit_loop.run()
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/fit_loop.py", line 200, in advance
epoch_output = self.epoch_loop.run(train_dataloader)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 130, in advance
batch_output = self.batch_loop.run(batch, self.iteration_count, self._dataloader_idx)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 101, in run
super().run(batch, batch_idx, dataloader_idx)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 148, in advance
result = self._run_optimization(batch_idx, split_batch, opt_idx, optimizer)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 202, in _run_optimization
self._optimizer_step(optimizer, opt_idx, batch_idx, closure)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 396, in _optimizer_step
model_ref.optimizer_step(
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/core/lightning.py", line 1618, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/core/optimizer.py", line 209, in step
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/core/optimizer.py", line 129, in __optimizer_step
trainer.accelerator.optimizer_step(optimizer, self._optimizer_idx, lambda_closure=closure, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/accelerators/accelerator.py", line 296, in optimizer_step
self.run_optimizer_step(optimizer, opt_idx, lambda_closure, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/accelerators/accelerator.py", line 303, in run_optimizer_step
self.training_type_plugin.optimizer_step(optimizer, lambda_closure=lambda_closure, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 226, in optimizer_step
optimizer.step(closure=lambda_closure, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/optim/lr_scheduler.py", line 65, in wrapper
return wrapped(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/optim/optimizer.py", line 113, in wrapper
return func(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/optim/adamw.py", line 119, in step
loss = closure()
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 236, in _training_step_and_backward_closure
result = self.training_step_and_backward(split_batch, batch_idx, opt_idx, optimizer, hiddens)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 537, in training_step_and_backward
result = self._training_step(split_batch, batch_idx, opt_idx, hiddens)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 307, in _training_step
training_step_output = self.trainer.accelerator.training_step(step_kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/accelerators/accelerator.py", line 193, in training_step
return self.training_type_plugin.training_step(*step_kwargs.values())
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/plugins/training_type/ddp.py", line 383, in training_step
return self.model(*args, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/parallel/distributed.py", line 1008, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/parallel/distributed.py", line 969, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0])
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/pytorch_lightning/overrides/base.py", line 82, in forward
output = self.module.training_step(*inputs, **kwargs)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 406, in training_step
loss, loss_dict = self.shared_step(batch)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 872, in shared_step
x, c = self.get_input(batch, self.first_stage_key)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 725, in get_input
encoder_posterior = self.encode_first_stage(x)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/content/stable-diffusion/ldm/models/diffusion/ddpm.py", line 869, in encode_first_stage
return self.first_stage_model.encode(x)
File "/content/stable-diffusion/ldm/models/autoencoder.py", line 325, in encode
h = self.encoder(x)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/content/stable-diffusion/ldm/modules/diffusionmodules/model.py", line 439, in forward
hs = [self.conv_in(x)]
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 457, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/content/stable-diffusion/env/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [128, 3, 3, 3], expected input[512, 1, 512, 3] to have 3 channels, but got 1 channels instead
Pleae help me

@justinpinkney
Copy link
Owner

Looks like somehow your images it not the right shape, should be 1,3,512,512. The code expects nhwc images out of your dataset I think, and converts to nchw somewhere else

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants