-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
78 lines (69 loc) · 2.88 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import math
import numpy as np
import tifffile as tiff
from train_unet import weights_path, get_model, normalize, PATCH_SZ, N_CLASSES
def predict(x, model, patch_sz=160, n_classes=5):
img_height = x.shape[0]
img_width = x.shape[1]
n_channels = x.shape[2]
# make extended img so that it contains integer number of patches
npatches_vertical = math.ceil(img_height / patch_sz)
npatches_horizontal = math.ceil(img_width / patch_sz)
extended_height = patch_sz * npatches_vertical
extended_width = patch_sz * npatches_horizontal
ext_x = np.zeros(shape=(extended_height, extended_width, n_channels), dtype=np.float32)
# fill extended image with mirrors:
ext_x[:img_height, :img_width, :] = x
for i in range(img_height, extended_height):
ext_x[i, :, :] = ext_x[2 * img_height - i - 1, :, :]
for j in range(img_width, extended_width):
ext_x[:, j, :] = ext_x[:, 2 * img_width - j - 1, :]
# now we assemble all patches in one array
patches_list = []
for i in range(0, npatches_vertical):
for j in range(0, npatches_horizontal):
x0, x1 = i * patch_sz, (i + 1) * patch_sz
y0, y1 = j * patch_sz, (j + 1) * patch_sz
patches_list.append(ext_x[x0:x1, y0:y1, :])
# model.predict() needs numpy array rather than a list
patches_array = np.asarray(patches_list)
# predictions:
patches_predict = model.predict(patches_array, batch_size=4)
prediction = np.zeros(shape=(extended_height, extended_width, n_classes), dtype=np.float32)
for k in range(patches_predict.shape[0]):
i = k // npatches_horizontal
j = k % npatches_vertical
x0, x1 = i * patch_sz, (i + 1) * patch_sz
y0, y1 = j * patch_sz, (j + 1) * patch_sz
prediction[x0:x1, y0:y1, :] = patches_predict[k, :, :, :]
return prediction[:img_height, :img_width, :]
def picture_from_mask(mask, threshold=0):
colors = {
0: [150, 150, 150], # Buildings
1: [223, 194, 125], # Roads & Tracks
2: [27, 120, 55], # Trees
3: [166, 219, 160], # Crops
4: [116, 173, 209] # Water
}
z_order = {
1: 3,
2: 4,
3: 0,
4: 1,
5: 2
}
pict = 255*np.ones(shape=(3, mask.shape[1], mask.shape[2]), dtype=np.uint8)
for i in range(1, 6):
cl = z_order[i]
for ch in range(3):
pict[ch,:,:][mask[cl,:,:] > .25] = colors[cl][ch]
return pict
if __name__ == '__main__':
model = get_model()
model.load_weights(weights_path)
test_id = 'test'
img = normalize(tiff.imread('data/mband/{}.tif'.format(test_id)).transpose([1,2,0])) # make channels last
mask = predict(img, model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) # make channels first
map = picture_from_mask(mask, 0.5)
tiff.imsave('result.tif', (255*mask).astype('uint8'))
tiff.imsave('map.tif', map)