forked from dojo/dojox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharc.js
143 lines (135 loc) · 4.19 KB
/
arc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
define(["./_base", "dojo/_base/lang", "./matrix"],
function(g, lang, m){
var twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8,
pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);
function unitArcAsBezier(alpha){
// summary:
// return a start point, 1st and 2nd control points, and an end point of
// a an arc, which is reflected on the x axis
// alpha: Number
// angle in radians, the arc will be 2 * angle size
var cosa = Math.cos(alpha), sina = Math.sin(alpha),
p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};
return { // Object
s: {x: cosa, y: -sina},
c1: {x: p2.x, y: -p2.y},
c2: p2,
e: {x: cosa, y: sina}
};
}
var arc = g.arc = {
// summary:
// This module contains the core graphics Arc functions.
unitArcAsBezier: unitArcAsBezier,
/*=====
unitArcAsBezier: function(alpha) {
// summary:
// return a start point, 1st and 2nd control points, and an end point of
// a an arc, which is reflected on the x axis
// alpha: Number
// angle in radians, the arc will be 2 * angle size
},
=====*/
// curvePI4: Object
// an object with properties of an arc around a unit circle from 0 to pi/4
curvePI4: curvePI4,
arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){
// summary:
// calculates an arc as a series of Bezier curves
// given the last point and a standard set of SVG arc parameters,
// it returns an array of arrays of parameters to form a series of
// absolute Bezier curves.
// last: Object
// a point-like object as a start of the arc
// rx: Number
// a horizontal radius for the virtual ellipse
// ry: Number
// a vertical radius for the virtual ellipse
// xRotg: Number
// a rotation of an x axis of the virtual ellipse in degrees
// large: Boolean
// which part of the ellipse will be used (the larger arc if true)
// sweep: Boolean
// direction of the arc (CW if true)
// x: Number
// the x coordinate of the end point of the arc
// y: Number
// the y coordinate of the end point of the arc
// calculate parameters
large = Boolean(large);
sweep = Boolean(sweep);
var xRot = m._degToRad(xRotg),
rx2 = rx * rx, ry2 = ry * ry,
pa = m.multiplyPoint(
m.rotate(-xRot),
{x: (last.x - x) / 2, y: (last.y - y) / 2}
),
pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,
c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));
if(isNaN(c1)){ c1 = 0; }
var ca = {
x: c1 * rx * pa.y / ry,
y: -c1 * ry * pa.x / rx
};
if(large == sweep){
ca = {x: -ca.x, y: -ca.y};
}
// the center
var c = m.multiplyPoint(
[
m.translate(
(last.x + x) / 2,
(last.y + y) / 2
),
m.rotate(xRot)
],
ca
);
// calculate the elliptic transformation
var elliptic_transform = m.normalize([
m.translate(c.x, c.y),
m.rotate(xRot),
m.scale(rx, ry)
]);
// start, end, and size of our arc
var inversed = m.invert(elliptic_transform),
sp = m.multiplyPoint(inversed, last),
ep = m.multiplyPoint(inversed, x, y),
startAngle = Math.atan2(sp.y, sp.x),
endAngle = Math.atan2(ep.y, ep.x),
theta = startAngle - endAngle; // size of our arc in radians
if(sweep){ theta = -theta; }
if(theta < 0){
theta += twoPI;
}else if(theta > twoPI){
theta -= twoPI;
}
// draw curve chunks
var alpha = pi8, curve = curvePI4, step = sweep ? alpha : -alpha,
result = [];
for(var angle = theta; angle > 0; angle -= pi4){
if(angle < pi48){
alpha = angle / 2;
curve = unitArcAsBezier(alpha);
step = sweep ? alpha : -alpha;
angle = 0; // stop the loop
}
var c2, e, M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);
if(sweep){
c1 = m.multiplyPoint(M, curve.c1);
c2 = m.multiplyPoint(M, curve.c2);
e = m.multiplyPoint(M, curve.e );
}else{
c1 = m.multiplyPoint(M, curve.c2);
c2 = m.multiplyPoint(M, curve.c1);
e = m.multiplyPoint(M, curve.s );
}
// draw the curve
result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);
startAngle += 2 * step;
}
return result; // Array
}
};
return arc;
});