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Debugging Mathematical Programming
Models: Principles and Practical Strategies

David J. Pannell, Ross S. Kingwell and Steven Schilizzi "

Bugs are an unavoidable aspect of mathematical program-
ming (MP} modelling. In this paper we discuss the pre-
vention and diagnosis of bugs in MP models. The topic
is rarely addressed in the literature but is crucial to the
success of modelling projects, especially for large models.
We argue that finding a bug and understanding unex-
pected results (whether or not due to a bug) are very
closely related activities. We identify different types of
bugs and suggest practical strategies for dealing with each.
Adopting procedures for prevention of bugs is essential,
especially for large models. We outline the prevention
strategies we have adopted and found successful for the
MIDAS and MUDAS models.

1. Introduction

Validation of mathematical programming (MP) and
other types of models has been discussed by a number
of authors (e.g. Gass; McCarl). Debugging is one
component of the validation process but it has gener-
ally been given a cursory treatment in the validation
literature. For example, McCarl’s "procedure for
model validation” includes the following: "If the
model has failed, discover why. ... Repair the model
and go to step 2" (p.161). Readers who have con-
structed large MP models will know how difficult and
time consuming it can be to obey these simple instruc-
tions.

Debugging has also been neglected in the many texts
which deal with construction and solution of MP mod-
els. We hope, in this paper, to counter some of this
neglect. Our ideas are based on experience over the
past decade developing, using and actively maintain-
ing the MIDAS whole-farm model (e.g. Morrison e?
al. 1986; Kingwell and Pannell, 1987) and more re-
cently MUDAS, a much larger version including sea-
sonal variation (Kingwell ez al. 1992). Our aims in this
paper are: to identify some principles of bugs and
debugging, to discuss some implications of these prin-
ciples, to identify types of bugs and their symptoms,
and to create checklists of strategies for (a) debugging
and (b) preventing bugs.
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2. Guiding Principles

In this section we identify and discuss some principles
of bugs and debugging which are relevant to diagnos-
ing, curing and preventing bugs. Our principles are:

{a) Prevention is better than cure.

This is an old but apt adage which applies as much in
debugging MP modelling as anywhere. We discuss
prevention of bugs at some length later.

(b) An unexpected model result is due to a bug unless
you can convince yourself otherwise.

This implies a conservative approach to interpreting
model results. It means that you do not accept a
plausible explanation for a result without examining
and testing the alternative explanation that the result is
at least partly due to a bug. In our experience, it is easy
to invent a more or less convincing explanation for
almost any result in a complex model. Such explana-
ttons should not be accepted uncritically. On the other
hand, you can’t prove there is no bug (in much the same
way as in the dominant paradigm for science it is
possible to disprove a hypothesis, but not to prove it.
See Magee). In the end it comes down to the modeller
taking "reasonable” care, a matter of subjective judge-
ment.

(c) Maintaining a bug-free (or at least low-bug) model
requires discipline.

Most importantly, the modeller needs discipline to
pursue every unexpected result or suspicious looking
matrix coefficient to the point where you are convinced
that it is or isn’t due to a bug. It’s all too easy to go on
to the more interesting task of applying the model.
Discipline is also required to keep model documenta-
tion up to date. This leads to:
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(d) A well documented model is easier to debug and
maintain.

This is possibly the most obvious but also the most
frequently ignored of our principles.

(e) Knowledge of the model is essential for debugging.

Knowledge of the model’s assumptions and structure
is essential for uncovering some bugs. Further, de-
tailed knowledge of the real-world system being mod-
elled is also useful, particularly for recognising model
runs which are symptomatic of a bug.

(f) In a well maintained model, the number of bugs in
a matrix decreases over time as they are discovered
and fixed, but not to zero.

After along period of model use and maintenance, any
remaining bugs are unlikely to be serious, or at least to
conflict with expectations. Such bugs can remain
undetected for a long time. For example, we recently
found 15 wrong coefficients in the EWM version of
MIDAS which had been there for several years. MI-
DAS is an intensively maintained and used MP model
and it is not especially large as MP matrices go, yet it
still harboured at least 15 undiscovered bugs for sev-
eral years. Fortunately they weren’t serious.

Long-standing bugs like these will generally only be
discovered if the model is used in a new and innovative
way, model input or output is examined in different
ways or a new person joins the modelling team. The
15 bugs mentioned above were discovered when anew
format for output was created. However these new
approaches to model use rapidly dissipate their capac-
ity for revealing bugs as they too become routine.

(8) The number of bugs in a matrix increases rapidly
with the size of the matrix.

For example, suppose there is a one in 10,000 chance
of an error in any coefficient chosen at random (includ-
ing coefficients which should be zeros). Inasmall 100
x 100 matrix, the expected number of bugs in coeffi-
cients is 1, the probability of no bugs is 0.37 and the
probability of five or more coefficients being wrong is
0.0037. Table 1 shows how these probabilities change
as matrix size increases. The probability of there being
at least one bug in the matrix increases to be over 99
percent for a matrix with 50,000 coefficients. Even
morte worrying, the probability of there being five or
more errors in the matrix is almost 20 percent for a

30,000 coefficient matrix, which would not be consid-
ered particularly large.

Table 1: Probabilities of Errors in
CoefTicients if the Probability of an
Error in a Randomly Chosen
Coefficient is 0.0001
(N = number of errors)
Matrix size E(N) P(N=0) P(N=5) P(N=10)
(rows x cols)
10,000 1 0.37 0.0037 *
20,000 2 014 0.053 *
30,000 3 0.050 0.18 0.0011
40,000 4 0.018 0.37 0.0080
50,000 5 0.0067 0.56 0.030
* p<0.001

The probabilities in Table 1 are based on the assump-
tion that the probability of an error is independent of
the size of a matrix. In reality, the probability may
increase with matrix size due to the fact that it is more
difficult to examine larger matrices and more difficult
to recognise a bug when you see one. Table 2 is similar
to Table 1 except that it is based on the assumption that
the probability of an error in a randomly chosen coef-
ficient is proportional to the matrix size (0.0001 for a
10,000 coefficient matrix, 0.0002 for 20,000, etc.).
This assumption has a big effect on the probabilities.
A 30,000 coefficient matrix now has a 94 percent
chance of containing five or more errors and a 41
percent chance of 10 or more errors. These prob-
abilities are based on simple assumptions and should
be viewed as illustrative only. However they do high-
light the great risk of bugs in large matrices especially
considering that the matrix sizes used here are by no
means large. Matrices with millions of coefficients are
certainly in use.

With modern software and hardware, human ability to
maintain and debug models is the only factor limiting
their size and complexity. It does pose real limits
which need to be recognised and respected. It is
difficult to say how big is too big due to the repetitive-
ness of some models. MIDAS has little repetition.
With allocation of adequate resources (0.3 to 0.5 per-

" son years per year) and strict adherence to the sorts of

bug prevention strategies suggested here, its 400 x 300
matrix can be maintained with only occasional errors.
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Table 2: Probabilities of Errors in
Coefficients if the Probability of an
Error in a Randomly Chosen
Coefficient is Proporticnal to
Matrix Size (N = number of errors)
Matrix size  E(N) P(N=0) P(N=5) P(N=10)
(rows x cols)
10,000 1 0.37 0.0037 *
20,000 4 0018 037 0.0081
30,000 9 * 0.94 041
40,000 . 16 * 09996  0.96
50,000 25 * 0.9999  0.9998
* p<0.001

MUDAS is much bigger (1500 x 1300) but it is also
more repetitive. Nevertheless we feel that a matrix of
this size is right at the limit of what can realistically be
maintained in a usable and fairly error-free state.

Taking money to build models of the size one some-
times hears about (tens of thousands of columns) may
be self deluding if not outright dishonest and can
reflect badly on modellers, on the agricultural econom-
ics profession and on the individuals involved. There
is little or no prospect of satisfactorily debugging such
a model, so any results from them must be subject to
grave doubts.

(h) Maintaining a large MP model in a fairly bug-free
state requires a large commitment of human re-
sources.

Rarely are sufficient resources provided. We consider
it likely that many large MP models in active use
contain important bugs.

(i) Bugs you thought you had fixed can easily come
back to haunt you.

Anyone who has been responsible for debugging a
large model over a long period of time will be well
acquainted with this principle. Later in our discussion
of prevention strategies we suggest model naming and
updating strategies which should avoid this problem.

(j) When you are actively searching for one bug, you
are quite likely to discover other, unsuspected bugs.
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The act of searching for a bug requires a high degree
of mental acuity. It may also require critical examina-
tion of aspects of the model which have previously
been neglected. Both of these factors can lead to the
modeller stumbling onto previously unsuspected bugs.

(k) Good hardware and software can make debugging
much less of an onerous task.

Debugging often involves making numerous changes
to the model and conducting several model runs. Ob-
viously, using the fastest available hardware mini-
mises the response time for tests of hypotheses.
Software can probably make an even bigger differ-
ence, not just with speed of solution, but even more so
with the tools now available to edit matrices (e.g.
Pannell 1988), generate solutions and summarise out-
put (e.g. Pannell and Bathgate 1991).

3. Symptoms of Bugs

The more serious bugs are usually detected through
one of the following symptoms appearing in the model
solution (a) an unlikely model solution, (b) no feasible
solution, or (c) an unbounded solution. The majority
of these symptoms are observed during the model
development and testing phase but they can also occur
when the model is changed for a particular analysis.
The change may introduce a new bug or it may allow
an existing bug to express itself.

Infeasible or unbounded solutions are clearly indicated
in the output from the computer program, but identifi-
cation of unlikely solutions requires a degree of sub-
jective judgement. An unlikely solution can be
blatantly obvious or very subtle. In general an unlikely
solution is one in which one of the elements of the
solution is outside the range within which the modeller
judges it should fall. The suspect element may be the
level of an activity, the shadow cost (marginal or dual
value) of an activity, the level of slack for a constraint
or the shadow price for a constraint. Examples of
various types of unlikely solution include:

® an activity is selected at a level judged to be too
high;

® an activity which you judge should be included in
the solution at non-zero level is not included;

® an activity which you judge should not be included
in the solution at non-zero level is included;
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® the shadow price of a constraint is very different
from the range within which you judge it should
fall;

® the shadow cost of an activity is very different from
the range within which you judge it should fall;

® aconstraint which you judge should be binding in
the solution has a non-zero slack value;

e there are two similar copies of a model which you
believe should give the same basic solution but
they do not;

® the solution seems consistent with the relationships
and constraints included in the model, but an expert
in the system being modelled advises that the
solution is not consistent with the real world.

Later we suggest strategies for determining what type
of bug, if any, is causing these symptoms. The symp-
toms listed above all relate to problems with the model
solution. However many bugs are too subtle or minor
to have a detectable effect on the solution. It may be
that a bug affects the levels of several activities, but
that the resulting levels are plausible, even though they
are incorrect. Alternatively the model user may have
no prior expectation about which of a range of activi-
ties will be included in the optimal solution, In this
situation a mis-typed coefficient could dramatically
alter the optimal solution without arousing suspicion.

There are two ways of dealing with these more subtle
bugs. One is to detect them through careful examina-
tion of the model’s coefficients, checking their consis-
tency with the underlying assumptions of the model.
The potential for tedium in this task is great, especially
in large models. The other weapon against subtle or
minor bugs is to prevent them occurring in the first
place, as we discuss later.

4. Strategies for Debugging

Once a symptom has been detected, the next step is
diagnosis of the cause. An important element of the
diagnosis is an awareness of the full range of possible
causes of the observed symptom. Table 3 shows one
way of categorising the range of possible diagnoses.

Here we are concerned with symptoms which occur in
a model solution, not with bugs which are initially
detected through checking of model inputs. There is

no fool- proof strategy which will lead directly to the
diagnosis of a bug and it is difficult to generalise about
the best strategy. However a methodical approach is
bound to be more productive than a random search. A
useful analogy can be drawn between debugging and
scientific research. The practice of science and effi-
cient debugging involve similar elements.

Firstly, there is the requirement that the scientist (or
modeller) immerse herself or himself in the problem.
This involves detailed study of the general field of
research (or of the model and its assumptions). The
first stage will be already partially complete since,
presumably, the person doing the debugging is thor-
oughly familiar with the model. The other element of
this phase is to become familiar with the behaviour of
the bug. Extra model runs may be needed to reveal
circumstances in which the bug does and does not
OCCUT.

The second element is identification of a range of
possible explanations for the problem being addressed.
Itis sometimes easy to narrow the range of reasonable
diagnoses. Table 4 shows a checklist of how the range
of possible diagnoses can be narrowed for particular
symptoms apparent in the model solution. Where the
table indicates that a diagnosis can be ruled out, it
means it can be ruled out as the cause of the symptom
indicated. Clearly it doesn’t necessarily mean that the
problem is completely absent from the matrix. Some
diagnoses cannot be ruled out altogether but are quite
unlikely to cause the indicated symptom.

Notice that most diagnoses indicated in Table 4 fall
under headipg 2: the model is consistent with the
underlying agsumptions. It is usually impossible to
rule out the converse diagnosis (that the model is not
consistent with the underlying assumptions) without
further checking of the matrix structure and contents.

In the third stage, specific hypotheses are formulated
and tested in experiments. This is discussed in detail
in the next section. Fourthly if the process is success-
ful, information from the experiments is integrated
with information about the general field to provide an
understanding of the problem. Finally, the new under-
standing may allow improved management of the sys-
tem being studied (or correction of the bug).

Just like science (Koestler) debugging cannot be a
cold, calculating and linear process. Both involve
essential elements of inspired guesswork, hunches and
sudden flashes of insight which cut through the mist.
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1.

Table 3: Possible Diagnoses of a Suspected Bug

The model is not consistent with the underlying assumptions.
1.1 A coefficient is incorrect.
1.1.1 A coefficient has been mistyped.
1.1.2 A coefficient has been given the wrong sign.
1.1.3  Inconsistent units of measurement have been used when deciding on the value for a
coefficient.
1.1.4 A coefficient has been miscalculated.
1.1.5 A coefficient has been omitted from the matrix.
1.1.6 A coefficient has been placed in the wrong place in a matrix.
1.2 A constraint is incorrect.
1.2.1 A constraint is operating in the wrong direction (e.g. as a "greater than" when it shouid be a
"less than').
1.2.2 A needed constraint is omitted.
1.2.3 A constraint is ill-conceived (e.g. coefficients omitted or in the wrong activities).
1.2.4 The model is over-constrained; an extra, unnecessary constraint has been included.
1.3 An activity is incorrect.
1.3.1  Anactivity is ill-conceived (e.g. coefficients omitted or placed in the wrong constraints).
1.3.2 A needed activity is omitted.
The model is consistent with the underlying assumptions.
2.1 The underlying assumptions are consistent with the real world.
2.1.1 The unexpected result is a new insight about the real world.
2.1.2 The model resuit is correct but is being misinterpreted (e.g. the level of an activity may be
interpreted using incorrect units of measurement).
2.1.3 There is a bug in the software used to solve the model.
2.1.4 Bad or inadequate control instructions were given to the software used to solve the model
(e.g. instruct program to maximise the objective function when it should be minimised).
2.1.5 The model is badly scaled, resulting in an accumulation of rounding errors when the model
is solved.
2.2 The underlying assumptions are not consistent with the real world. The model may need new
constraints or activities or changes in the values of some coefficients. needed constraint is omitted.

Table 4: Diagnoses From Table 3 Which Can be Ruled Qut as the Cause of Particular Symptoms

or are Unlikely to be the Cause

Symptom Ruled out Diagnoses® Unlikely Diagnoses
No feasible solution 2.lb, 22,122 2.13,2.14
Unbounded solution 2.1%,2.2,12.4 2.1.3
The solution includes elements which are not possible 211,22

in the real world system being modelled
The solution algorithm includes an automatic facility for 2.1.5

scaling a matrix and this facility is switched on

Ruling out a diagnosis at one level also rules out all diagnoses at a lower level. For example, if diagnosis
2.3 is ruled out then so too are diagnoses 2.3.1 and 2.3.2.

Although unlikely if a reputable solution algorithm is used, diagnoses 2.1.3 and 2.1.4 should not be
completely ruled out. Occasionally adjustments to the feasibility tolerance used in a package will cure the
problem of not being able to find a feasible solution in a perfectly valid and feasible model.
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Also, neither process will proceed neatly and linearly
through the stages described above. There will be
overlap between stages and possibly feedback of in-
formation to an earlier stage.

5. Techniques for Testing
Hypotheses

The third element of the debugging process listed
above is to formulate and test hypotheses. There are
many techniques for looking at a model’s inputs and/or
outputs or of manipulating and comparing model so-
lutions which can help to test for particular problems.
We will examine various techniques categorised ac-
cording to the diagnoses in Table 3. Then we will
suggest the order in which the different techniques
should be applied, depending on the symptoms ob-
served.

Diagnosis 1

Testing for an error in the matrix coefficients is, con-
ceptually, quite simple. It requires examination of
coefficients in the appropriate region to ensure that
they are consistent with the underlying assumptions of
the model. In practice the problem is deciding which
coefficients to examine. Several of the techniques
suggested here are designed to help narrow the focus
of the search for bugs. Searching for a bug generally
starts by employing a technique to identify a suspicious
section of the matrix. Greenberg (1993) calls this first
stage "isolation".

For now, suppose that the hunt has been narrowed to
a sectton of the matrix: a row or column or small block
of coefficients. At this stage there is no alternative to
a visual examination of all coefficients in the suspect
region. It is often possible to use a text editor to look
at data in the format used by the computer algorithm,
but it is probably more productive to examine the data
in situ in the matrix. This provides additional visual
cues (presuming that the model has been thoughtfully
and consistently constructed) which can make a differ-
ence in recognising a problem. A matrix editor like
GULP (Pannell 1988) is invaluable for this purpose as
it allows the modeller to see coefficients in context
without having to print out the matrix. Clearly the
person undertaking the examination needs to be thor-
oughly familiar with the modelling technique and the
model’s assumptions so that he or she can recognise
an incorrect coefficient. The modeller also needs to be
aware of all the ways in which a coefficient, constraint

or activity can be in error, as listed in Table 3, and
check thoroughly for each. Identification of an error
must, in the end, involve an examination of this type.
Greenberg (1993) calls this stage the search for an
"explanation”. Isolation usually helps in reaching an
explanation. Once the problem has been fully diag-
nosed, selection of a treatment to correct the problem
is usually straightforward.

Consider now the possible methods of isolating a
problem.

(a) Often, the symptom observed in the model solu-
tion provides valuable clues. Be sure to make
the most of any clues which are provided. If the
problem area is not obvious, examine the solu-
tion for logical inconsistencies in the relative
levels of different activities or for unrealistic
shadow costs of non-basic activities or shadow
prices of binding constraints. If this leads to
questioning a particular section of the matrix,
then proceed to a detailed examination of the
coefficients in that section.

(b) Conduct model runs to determine circumstances
where the bug1 does and does not occur. Does it
always have an impact on the solution or does it
only express itself when some parameters take
particular values? For example if a bug occurs in
a coefficient of activity A which causes the se-
lection of unrealistic levels of activity B, the bug
will only be apparent when activity A is included
in the optimal solution. A series of runs in which
a key parameter is varied over a wide range is
a good way of examining the behaviour of the
bug. Try to use information about its behaviour
to determine which constraints and which activi-
ties are the root of the problem.

(b) If you suspect that a bug occurs in a particular
activity but are unable to identify the specific
problem, a potentially useful technique is to
compare the solutions of two very similar mod-
els: one with the activity constrained to zero level
and the other with the activity constrained to a
low level (e.g. 1 unit). Then calculate the dif-
ference between the solutions in the level of each

' In general, reference to a "bug” in this section should be
interpreted as a "hypothesised bug".
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activity and the degree of slack for each con-
straint. This reveals all the direct and indirect
impacts of the activity on other activities and
constraints. This can sometimes reveal a linkage
between the suspect activity and another activity
which should not be occurring, leading you to
examine the matrix for unintended links. Under-
taking such a comparison can be a very tedious
operation without some computerisation. Op-
tions to do this include using a custom-written
computer program or a spreadsheet package.

(c) If you have a recent previous version of the
model in which the unexpected result does not
occur, conduct a comprehensive comparison of
the data for the two versions. This may reveal a
bug which has been introduced inadvertently. It
is possible that the bug was present in the pre-
vious version without manifesting itself in the
model solution. In this case the bug will not be
revealed directly by the comparison of data.
However, the comparison will at least show
which coefficients have changed, allowing you
to search for the change which has caused the
bug to reveal itself. Such information should
give clues as to the location of the actual bug. If
the data are stored in a text file (e.g. in MPS
format), importing the two models into a spread-
sheet package can greatly ease comparison of
data files.

(d) Another technique is to delete sections of the
matrix (groups of rows or columns) and see if the
problematic result still occurs. This is only pos-
sible in some circumstances. Care is needed
when deciding which parts to delete as it is easy
to introduce new problems by removing a crucial
constraint or activity. The safest approach is to
limit such deletions to discrete and fairly self
contained sections of the model. For example if
a model includes several different regions, it will
probably be possible to delete one of the regions
without disturbing the functionality of the other
regions.

If the model data is stored in MPS format, deletion of
a constraint with more than a couple of coefficients is
a very tedious task. Coefficients for each activity are
grouped together but this means that coefficients for
any one constraint can be distributed throughout the
data file. The solution is to use a matrix editor (such
as GULP), which makes deletion or addition of con-
straints a simple task.
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Greenberg (1993) outlines some isolation techniques
for diagnosis of infeasible models. These are outlined
further below.

Tests of hypotheses which do not involve bugs in the
matrix tend to be quite specific to particular diagnoses:

Diagnosis 2.1.1

Testing a hypothesis that an unexpected result is cor-
rect and that the model is free of bugs is, unfortunately,
impossible. McCarl (p.157) states that:

Models can never be validated, only invali-
dated. ... The outcome of a model validation
process is either a model that has been proved
invalid or a model about which one has an
increased degree of confidence.

Although this is strictly true, it is possible to indirectly
test the validity of a particular result, Suppose that you
have searched thoroughly for a bug without finding
one but are unable to convince yourself that a particular
unexpected result is valid. Even if you do have a
plausible explanation, some results clash so strongly
with prior expectations that any attempt to publicise
them without very convincing supporting arguments
will threaten your credibility. One approach is to try
to reproduce the result using a different technique; try
using a different modelling approach (e.g. dynamic
programming, simulation) or a much simpler MP
model®. If you can independently reproduce the result
it at least gives you confidence that the result is correct
and it may also provide a convincing explanation for
the result.

Apart from this, one is limited to validation through
absence of invalidation. If you do have a plausible
explanation, conduct additional model runs to attempt
to falsify it. This can be done by preventing the
mechanism for your plausible explanation from oper-
ating. For example, suppose you have two similar
models but there is an unexpected difference in the
level of activity A between the two solutions. You
hypothesise that this is due to changes in the level of
activity B. Try constraining the level of activity B to
be the same in both solutions. If the difference in
activity A then disappears, this lends support to your
hypothesis about the mechanism and helps dispel
doubts that it may be simply due to a bug.

2 Thanks to Brian Hardaker for this suggestion.
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Diagnosis 2.1.2

This is simply a matter of careful checking. For ex-
ample if the level of an activity seems wrong, refer to
the model documentation and check that the coeffi-
cients for that activity are consistent with the unit of
measurement you are using to interpret the result.
Also check that the puzzling solution is reported by the
software as being optimal. It may be that the activity
levels are so strange because the solution is infeasible
or unbounded.

Diagnosis 2.1.3

Implementing an accurate and reliable computer pack-
age for mathematical programming is notoriously dif-
ficult. Even the most highly reputed packages are not
immune from bugs. For example Tice and Kletke
(1984) reported a serious bug in a version of MPSX, a
powerful and widely used package for mainframe
computers. After a period of experience with a model
the modeller may gain confidence that the software is
in fact correctly finding optimal solutions. However,
in the development phase the possibility of errors
associated with an algorithm should not be ruled out.

Diagnosis 2.1.4

Occasionally, a problem of bizarre and puzzling model
solutions can be resolved by correctly informing the
algorithm that the objective is maximisation or mini-
misation.

Some MP computer packages allow adjustment of the
"tolerances” used to test whether a given solution is
feasible or optimal. A feasibility tolerance is a small
number (e.g. 1x 10'8) which gives the maximum sum
of infeasibilities for all constraints before the basis is
considered to be feasible. If the package is reporting
that it cannot find any feasible solution but you are
unable to find any problem with the model’s structure
or coefficients, adjustments to the feasibility tolerance
may solve the problem. For example, try relaxing the
tolerance to 1 x 10°. The documentation for the
algorithm may give guidance about which values to
try.

The optimality tolerance is the minimum improvement
to the objective function which an activity must make
before it will be brought into the basis. If the computer
package appears to be getting stuck in a loop so that it
never reaches the optimal solution, adjustments to the
optimality tolerance may solve the problem.

Diagnosis 2.1.5

A badly scaled matrix is one in which there is a big
difference in the magnitudes of coefficients used. A
badly scaled matrix has a greater chance of failing to
solve because of the accumulation of rounding errors
which occur in every mathematical operation on real
numbers in a computer. Such rounding errors are
exacerbated by poor scaling. Symptoms of accumu-
lated rounding errors can include an unbounded solu-
tion, an infeasible solution or an apparently optimal
solution which is actually not consistent with the con-
straints of the model. There is no hard and fast rule
about how bad scaling can be before serious rounding
errors occur. Many packages include warning mes-
sages based on a rule of thumb regarding the ratio
between the largest and smallest coefficients in the
matrix.

If a change in scaling is needed, it is stimply a matter
of using different units of measurement for some rows
and/or columns. Converting the units of measurement
entails multiplying all the coefficients in a row or
column by the same value. This can be done for as
many rows or columns as necessary to ensure that
coefficients are not too different. It is wise to use
scaling multipliers which do not make the interpreta-
tion of output too difficult.

Diagneosis 2.2

Sometimes you will come to believe that the model is
correct within itself but that it is failing to capture some
aspect of the real world. Typically you may feel the
need for new constraints or for distinguishing between
similar but slightly different activities or constraints.
This requires interaction with an expert in the biologi-
cal or technical system being modelled. Such interac-
tion should be viewed as part of the ongoing process
of model development (e.g. Morrison, 1987). Your
expert may volunteer suggestions that such changes
are needed. A thorough and up-to-date documentation
is very helpful for facilitating productive interaction
with outside experts.

6. Matching Hypotheses to
Symptoms

Having surveyed the available techniques and tools,
let us now consider how one should approach particu-
lar symptoms. In what order should hypotheses be
tested and these techniques applied? The suggestions
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which follow are certainly not exhaustive in their
coverage of the full range of symptoms. They also
cannot be applied in an unthinking "cookbook" man-
ner; as we have observed, successful debugging re-
quires careful thought as well as creativity and
inspiration.

There are two considerations when deciding on the
orderin which hypotheses should be tested: the relative
likelihood of alternative hypotheses and the ease with
which they can be tested. Commonly there are several
hypotheses which could equally well explain the
symptom and which are about as likely as each other
to be true. However the difficulty of testing different
hypotheses can vary widely, so we recommend that, in
the absence of any reason to suspect a particular type
of bug, ease of testing should initially be the main
criterion used.

No Feasible Solution

For infeasible and unbounded solutions, one part of the
diagnosis problem requires no effort: there clearly is
something wrong with the matrix. Clues about where
to start looking are provided; one or more constraints
is indicated as being infeasible or one of the activities
1§ listed as unbounded. Unfortunately, the clue rarely
leads to easy identification of the cause of the problem.
This applies particularly to infeasible models, where
the cause of the problem may lie in a constraint which
is not reported as being infeasible.

Start by observing which rows are reported as being
infeasible in the program output. If there are not too
many infeasible rows, carefully check their coeffi-
cients. Coefficients being entered with the wrong sign
(i.e. positive when they should be negative) are a
possible cause of infeasibility.

The next step, if needed, is to check that all constraints
are operating in the correct direction. Are there any
"less than" constraints which should actually be
"greater than” constraints, and vice versa?

Next see if there are any "equals” constraints in the
model which can be relaxed to "less than" or "greater
than” constraints. Some modellers are prone to over-
use "equals” constraints and this can easily lead to
unnecessary infeasibilities.

After exhausting these simple approaches you must

resort to more time consuming techniques. Greenberg
(1993) outlined several techniques which can help to
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isolate an infeasibility. One is based on a theorem by
Dantzig which says that if an LP is infeasible, there
exists an infeasible one-constraint LP formed by add-
ing up the constraints, weighted by their shadow costs
in the infeasible solution. The one-constraint LP po-
tentially has the same number of activities as the
original, although some coefficients are likely to be
zero. The coefficient for an activity in the one-con-
straint model is calculated by multiplying each coeffi-
cient of the activity by its corresponding shadow price
in the infeasible solution and adding up the results.
Greenberg observed that:

This has great appeal for diagnosis formation
because, on the surface, it seems that explain-
ing a one-constraint infeasibility is easy, at
least compared to the original LP. (Greenberg,
1993, p. 124).

The main useful information from this technique is
which activities have non-zero coefficients in the ag-
gregated constraint, not necessarily the numerical val-
ues of their coefficients. If the number of non-zero
coefficients in the aggregated constraint is low, iden-
tifying the cause of the infeasibility may be straight-
forward. On the other hand, there may be no non-zero
coefficients, which provides no new information, or a
very large number of them, which does not help to
clarify the issue very much.

A second technique is to find a smaller subset of the
matrix which is still infeasible. Ideally you seek the
"irreducible infeasible subsystem" which is no longer
infeasible if any of its constraints are dropped (Green-
berg, 1993). This method was first suggested by De-
brosse and Westerberg. Chinneck and Dravnieks
(1991) have developed several different methods for
identifying the irreducible infeasible subsystem. Start
by removing all constraints having zero-shadow prices
in the infeasible solution. Then remove activities
which have no coefficients in any of the remaining
constraints. The resulting model is still infeasible but
it may be further reducible. To test this, one of the
methods involves dropping another constraint at ran-
dom (and any further activities with no coefficients).
If the model is still infeasible, leave that constraint out
and proceed to drop another constraint at random.
When the model becomes feasible, add back in the
constraint which made the difference (and any activi-
ties you dropped with the constraint). Keep this con-
straint in the model but drop each of the remaining
constraints one at a time. If dropping a constraint does
not make the model feasible, leave it out. After testing
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all of the remaining constraints, the resulting subsys-
tem is irreducibly infeasible.

Like the one-constraint approach, while this canisolate
the infeasibility, it does not necessarily provide an easy
explanation of its cause. Nevertheless it is now possi-
ble to search for that explanation in what is almost
certainly a much smaller model than the original

Another way to reduce the model which may be useful
in some circumstances is to add "artificial activities”
or "artificial variables" to the model. For each less-
than constraint, add an activity with a coefficient of -1
in the row and zero coefficients in every other row
except the objective function. For each greater-than,
add a similar activity with a coefficient of 1 in the row.
For each equals constraint, add two artificial activities,
one of each type. Include an unfavorable coefficient
in the objective function of each artificial activity, such
as 1000 in a minimization problem or a -1000 in a
maximization. These artificial activities will not be
selected unless they have to be to achieve feasibility,
but they allow the package to find a feasible solution
when it would otherwise be impossible. Observe
which artificial activities are selected at non-zero lev-
els and delete them. Attempt to solve the model again.
Delete any new non-zero artificial activities. Repeat
this until the model becomes infeasible again. At this
point, the constraints with deleted artificial activities
contain the cause of the infeasibility. The resulting
infeasible subsystem is not necessarily irreducible, but
the technique is simple to apply and does not use the
shadow prices from the infeasible solution, which are
not provided by some LP packages. If desired, one of
Chinneck and Dravnieks’ (1991) techniques (such as
the one described above) can be applied to the subsys-
tem to achieve irreducibility.

Note that there is a danger in this approach of causing
the model to become unbounded. This will occur if
the objective function coefficient of one of the artificial
activities is not sufficiently unfavorable to counteract
a benefit generated elsewhere in the matrix. To avoid
this, use very large unfavorable objective function
coefficients in the artificial activities.

The third technique outlined by Greenberg (1993) is
"successive bounding”. This is not described in detail
here because it is only a practical option if the LP
software being used has the capacity to conduct it
automatically. The advantage of successive bounding
is that, when it does work, is provides not just an

isolation, but an explanation of the cause of the infea-
sibility.

If you have been unable to find the cause of an infea-
sibility and suspect that there is actually nothing wrong
with the matrix, try adjusting the feasibility tolerance
in your computer package. Alternatively some pack-
ages will save details of the basis for later use. Instruct
the package to save the basis which is nearest to being
feasible. Then instruct it to solve again, starting from
this basis. The different accumulation of rounding
errors may allow the package to correctly identify that
the model is feasible. This is a suggestion which
applies to relatively large models. If that does not
work, test for a failure of the LP software by making
substantial changes to key objective function coeffi-
cients and trying to solve the model. If it does correctly
solve it means that the original model is not infeasible,
since changing only objective function coefficients
cannot affect the feasibility of a model. In this case, it
may be possible to find the optimal solution for the
original model by solving it starting from the optimal
basis for this revised model.

If you have tried all these techniques and are still
unable to obtain an optimal solution, it may be that
your model correctly represents the problem but the
problem has no feasible solution.

Unbounded Solution

Start by checking that the direction of optimisation
(maximisation or minimisation) used by the computer
program is consistent with the model.

Secondly identify the unbounded column from the
program output. The problem is that there is nothing
preventing this activity from being selected at an infi-
nite level. Thus the modeller should work through all
constraints of the model and check whether one of
them should be affecting the activity but is not. Pos-
sible reasons for the problem include: (a) coefficients
with the wrong sign, (b) constraints operating in the
wrong direction, (c) coefficients missing or in the
wrong place, (d) an omitted constraint.

Solution Conflicts with Expectations

It is common to be surprised by a result obtained from
a large MP model. Such surprise should be met with
scepticism and followed by a careful search for causes.
We suggest that the search proceed in the following
steps, which are in order of increasing difficulty: (a)
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check your interpretation of output, (b) check forerrors
in computer commands used and for obvious errors
made by the computer algorithm, (¢) check for bugs in
the model and (d) check hypothetical explanations
why the result may be correct.

Checking interpretation of output includes checking
that the solution is reported as being optimal, not
infeasible or unbounded. If so, check the units of
measurement you are using to interpret the solution.

Technical problems to check for include the direction
in which the model was optimised and other problems
with the control instructions given to the program.
Bugs with the computer package may leave obvious
symptoms (e.g. a mix of positive and negative shadow
costs of activities). If you suspect that the solution is
not truly optimal, check that the tolerances being used
by the algorithm are consistent with any instructions
given in program documentation.

If you have not identified the problem by this stage,
there is no alternative to searching for bugs in the
matrix. In practice you are likely to investigate alter-
native hypotheses in the order suggested by the par-
ticular symptoms observed. However we put forward
the following suggested order in which to test hypothe-
ses in cases where the modeller is uncertain how to
proceed.

If the problem is apparently in a particular activity or
constraint, examine it for obvious errors in coeffi-
cients: typing errors, coefficients with the wrong sign,
coefficients missing or in the wrong place, inconsistent
units of measurement or an error of calculation. If
appropriate, check that constraints are operating in the
right direction.

Unexpected solutions are often associated with one or
more activities being selected at levels outside the
range judged to be reasonable. (For convenience let
us call these "target activities"). If you don’t initially
find any problem with the coefficients or constraints
of the model, add a new constraint which forces the
target activity to be selected at a level which corre-
sponds to your prior expectations. It may be that there
is some error which is forcing a high or low level of
the activity. This will be revealed either by an infea-
sible solution or by behaviour of the constrained
model.

If the modified model is infeasible, it means that the
original model contains a "forcing substructure"
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(Greenberg, 1994). This is where an activity is forced
to take a particular value by the model’s constraints,
rather than as a result of its impact on the objective
function. If an activity is forced to its lower bound of
zero in every feasible solution, it is said to be "nonvi-
able" (Chinneck, 1992) and if this is not intentional it
probably indicates a bug. An activity’s level may be
determined by a forcing substructure even if the level
varies in different model solutions. Forcing substruc-
tures are not necessarily bugs, but even if they are not,
detecting and explaining them is valuable in under-
standing the model’s results. One method of searching
for forcing substructures is to use the successive
bounding technique to identify redundant constraints
on individual activities (Greenberg, 1994). For exam-
ple if an activity must have a positive value in every
feasible solution, its non-negativity constraint is re-
dundant. Greenberg (1994, p.125) argued that "seek-
ing redundancies reveals forced levels that deepen our
understanding of a solution by separating that which
is forced by implication and that which is determined
by economic trade off”.

If the unusual activity level is not due to a forcing
substructure, it could be that the activity is having a
larger or smaller beneficial impact on the objective
function than you expect. To test this, use the tech-
nique described earlier for comparing two solutions in
which the level of an activity is constrained to differ
by a small amount (say one unit). First constrain the
activity to a low level (e.g. zero) and then to a slightly
higher level. The difference in objective function val-
ues can easily be calculated but it is also possible to
determine which factors are contributing to the differ-
ence. Do this by (a) calculating the difference between
the two solutions in the level of each activity and (b)
multiplying differences by the objective function value
for that activity. The sum of these values gives the net
difference in the objective function value. You may
find unexpected indirect effects on the cbjective func-
tion which explain the unusual result; check that these
are not due to bugs.

Possibly the reason for the high or low level of the
target activity is a problem with an alternative activity
which competes with the target activity for resources.
Check for activities which compete with the target
activity and in each case examine them for bugs. If the
level of the target activity seems too low, search for
bugs which bias the model toward high levels of the
alternative activity.
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It is still possible to suspect a bug even if all activity
levels conform to prior expectations. Inappropriate
values for shadow prices, shadow costs or constraint
slacks may be symptomatic of a bug which will affect
activity levels if the model is altered (e.g. in sensitivity
analysis).

A very high shadow price can be investigated by
comparing two solutions in which the constraint limit
(right hand side term) is varied by a small amount (say
one unit). Calculate all differences in activity levels.
Unexpected large differences may indicate a bug.

A very large shadow cost for an activity is fundamen-
tally the same situation as an activity being selected at
a lower level than expected. Investigate it using the
strategy described above for unusual activity levels.

A large constraint slack may indicate (a) an error in the
right hand side term for that constraint, (b) a low or
missing positive coefficient or an erroneous negative
coefficient in an activity (for "less than" constraints)
or (c) a problem with low availability or high usage of
a resource represented in another constraint.

Diagnosis of an unusual model result is sometimes
particularly elusive. In these cases adopt the tech-
niques described earlier for Iocating the bug (or other
explanation) within the matrix: conduct model runs to
determine situations where the bug does and does not
occur; if possible delete sections of the matrix and see
if the problem still occurs. A deletion which cures the
symptoms of a bug may indicate that the bug occurs in
the deleted section.

If no bug has been found by now, it may be that there
is no error in the matrix coefficients or solving algo-
rithm. Instead the problem may be a failure to cor-
rectly represent the system being modelled. Some
aspect of the system may have been incorrectly ex-
cluded from the model or included in the model in a
way which fails to accurately represent its nature.
Alternatively it may be necessary to look for hypothe-
ses which explain why the result is, in fact, correct. If
possible, conduct tests to attempt to refute these hy-
potheses.

When a model is first constructed, it is advisable to
conduct runs for the purpose of trying to reveal bugs
hidden in the matrix. One strategy, suggested by
McCarl and Apland (1986), is to restrict the values of
all activities (using constraints or bounds) to a set of
values observed in the real world. Then try to solve

the model to check whether the real-world solution is
feasible within your model. If the solution is not
feasible, you need to find out why and correct the
problem. If the model does solve, check for unusual
activity levels or constraint slacks. If a lack of data
means that you cannot constrain every activity in the
model to a real-world value, it can be valuable to
constrain sub-sections of the model for which you do
have information about levels. Check for feasibility
and for any unusual side effects.

Another useful approach is to run wide ranging sensi-
tivity analysis, varying key parameters through plau-
sible (or even implausible) values and observing how
the model behaves. Often errors in the model are
revealed most starkly when it includes unusual or
unlikely combinations of parameter values.

7. Strategies for Preventing Bugs

Debugging is difficult, frustrating and time consum-
ing. The discovery of a bug after a set of model results
has been publicised is potentially quite damaging to
the credibility of the model and its developers. Many
bugs go undetected for a very long time, possibly
forever. For these reasons, prevention of bugs is cru-
cial to the success of a modelling project. Key ele-
ments of bug prevention are discipline and care, but
there is also a range of relatively simple strategies
which can contribute to prevention of bugs. In our
experience with the MIDAS and MUDAS models, the
following are useful elements of an overall bug pre-
vention strategy.

(a) During model development and construction,
proceed in small steps. Thoroughly test and
debug the model before adding the next compo-
nent or the next level of complexity.

(b) For aparticular LP package, if you have a choice
between entering the data with a text editor or
with a matrix editor, use the matrix editor. This
will dramatically reduce the risk of typing errors
and save considerable time. Also you are more
likely to spot existing errors if you are working
with a matrix format than in awkward formats
like "MPS" which is used by a number of major
packages. Use of a text editor to change MPS
data should be limited to small and simple
changes.

(c) Usea "macro” to automate repeated key strokes
when entering or editing a model. Some pro-
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grams (e.g all spreadsheets) have a macro facility
built in, or it can be made available in a separate
package. Macros not only save time but also
reduce the likelihood of errors being introduced
through typing fatigue.

For models with an intended long life, develop
computerised data entry systems. We have cre-
ated user-friendly spreadsheet templates which
allow users to view and change model assump-
tions without them needing to be familiar with
the matrix of the model. A simple example is
given by Pannell and Falconer (1987) and a full
listing of current spreadsheets is given by Pan-
nell and Bathgate (1991). These spreadsheets
allow users to view parameters in a format and
with units of measurement to which they can
relate easily. The spreadsheets perform arithme-
tic operations on the parameters to calculate the
required matrix coefficients. Of course there is
arisk that the formulae entered in the spreadsheet
themselves contain errors but at least these errors
only need to be detected and corrected once.
Without such a system, coefficients must be
calculated by hand and are more prone to error.

The GAMS system provides an alternative ap-
proach to data entry which also may contribute
to bug prevention. Data are presented to the
package in tables and algebraic inequalities
rather than the usual matrix format. This pro-
vides some of the advantages of the spreadsheet
approach described above.

Occasionally print out and inspect part or all of
the matrix showing numbers. Some computer
packages include the facility to print out very
compact summaries of the matrix using symbols
to represent coefficients of different magnitudes.
While this can be very convenient and useful for
checking the consistency of a model’s structure,
it can also mask errors which would be obvious
from an examination of the complete matrix.

Have one person with ultimate responsibility for
changes to the model and for ensuring that it is
up to date and free of bugs. Personal responsi-
bility is very important. We are aware of a
research institution at which a major model was
generating impossible solutions but because of a
lack of individual responsibility, the problems
went undiagnosed and unresolved. This general

(g)

(h)

@)

®

9]

U]

(m)

problem is compounded by the general lack of
recognition among research administrators of the
importance and resource requirements of model
maintenance and debugging. There is often little
incentive for individuals to take on this role; they
can earn more kudos in other activities.

Have only one master copy of the matrix to
which changes can be made. (Of course keep
back-ups of this). Failure to do this is the usual
cause of bugs which return after you thought you
had fixed them.

Have a meaningful and consistent system for
naming model data files according to model
version. MIDAS model versions are named
something like EWM91-4. The EWM indicates
the region represented, 91 is the year and the 4
indicates that this is the fourth version of the
model to be released during the year. Itis essen-
tial to assign a new version name after every
change or set of changes to the model. On DOS
microcomputers, consistent use of file exten-
sions is also helpful. All our MPS data files are
allocated the extension "MPS".

Have a meaningful and consistent system for
naming rows and columns. Make sure that a
legend is included in the model documentation
and that the documentation is readily available.

Use intuitively obvious units for rows and con-
straints. Do not worry about scaling unless nec-
essary. Record units of measurement within the
legend of row and column names.

Structure of the matrix (i.e. order of rows and
columns) can be important. Group related rows
and columns together and be consistent about the
order used so that the visual pattern of coeffi-
cients can help highlight a coefficient out of
place or with the wrong sign.

Have a good system for reporting bugs or prob-
lems or suggested changes to the person respon-
sible for the model. One approach s to distribute
"bug report sheets" with appropriate headings
and questions to all model users.

Have a system for recording all changes to a
model. Keep afile or log book showing the date,
the reason and the substance of each change and
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the revised name of the new version produced.
It can also be helpful to record the sources of
information used to make the change.

(n) If a system for summarising and condensing
output is used, be sure to examine a complete
model solution occasionally. The reason is the
same as for the summarised (symbolic) matrix
printout.

(0) Employ someone who is unfamiliar with the
model and have them go over the entire matrix
in detail, checking calculations and questioning
the logic of matrix structure. The aim should be
to convince themselves that they understand the
reasoning behind and derivation of every coeffi-
cient. This should occur whenever a new person
is employed to work on an existing model. As
well as giving them a thorough knowledge of the
model, even quite subtle bugs in the model can
be detected given such detailed attention. It is
also helpful to have as many people as possible
examine the assumptions and logic of the model,
even if each only covers a small subsection of the
model.

8. Concluding Comments

How many bugs are too many? In practice there is a
need to equate the marginal cost of reducing bugs with
the marginal benefit of their exposure. With large
models the cost of debugging is high, but presumably
the value of the information is also high otherwise
resources would not have been put into developing the
model. It comes down to a difficult judgement about
the probability of bugs, importance of the information,
size of the model, personal reputation, etc. On the
other hand, fear of potential (but unknown) bugs
should not prevent use of the model. All reasonable
care is care enough.

Keeping a large model up to date and bug-free is a
difficult, thankless, under-recognised task. No large
MP modelling project should be contemplated without
recognition of and adequate allowance given for de-
bugging and maintenance. Given the rapid increase in
probability of bugs in large models, "adequate” prob-
ably means more than is usually allocated.
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