-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
382 lines (318 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import time
from agents import *
from math_utils import lerp
from graph_utils import *
import datetime
import os
import torch.multiprocessing as mp
from driver_initializer import *
from call_generator import *
from speed_info import SpeedInfo
import dgl
import glob
def train(
city: City,
agent: Agent,
epochs=10,
time_steps=100,
write_log=False,
log_save_folder='./result',
save_model=False,
model_save_folder='./model_data',
verbose=True,
epsilon_min=0.0,
**kwargs
):
'''
Function for training.
:param city: road network environment
:param agent: agent strategy such as random, proportional, GCN_DQN.
:param epochs: total number of episode
:param time_steps: total number of time steps for single episode
:param write_log: whether to write log
:param log_save_folder: save log folder
:param save_model: whether to save model
:param model_save_folder: save model folder
:param verbose: print debugging message or not
:param epsilon_min: epsilon_min
:return:
'''
total_start_time = time.time()
if agent.do_epsilon_exploration:
city.epsilon = 1
else:
city.epsilon = 0
# TODO: check seed
city.random_seed = False
seed = 100
log_file = None
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = "%s_%s_%s"% (city.name, agent.name, current_time)
if save_model:
if not os.path.exists(model_save_folder):
os.makedirs(model_save_folder)
if write_log:
if not os.path.exists(log_save_folder):
os.makedirs(log_save_folder)
log_file = open("%s/%s_train_timestamp.txt" % (log_save_folder, file_name), 'w')
for epoch in range(epochs):
city.reset()
city.seed = seed
# Initialize city.
observations = city.initialize()
assigned_epoch = 0
missed_epoch = 0
start_time = time.time()
for i in range(time_steps):
seed = seed + 1
city.seed = seed
# get policy from s_t
policy = agent.get_policy(observations)
# apply policy to city and get observation/number of assigned order/missed order.
next_observations, assigned, missed = city.step(policy)
assigned_epoch += assigned
missed_epoch += missed
# training
agent.train(next_observations)
observations = next_observations
# epsilon for exploration.
if agent.do_epsilon_exploration:
city.epsilon = lerp(1, epsilon_min, (epoch * time_steps + i + 1) / (epochs * time_steps))
so_far_hit_rate = assigned_epoch / (assigned_epoch + missed_epoch + 1e-8)
if verbose:
print("hit rate so far: %.4f" % so_far_hit_rate)
# write log for every 10 time steps.
if i % 10 == 0 and write_log:
end_time = time.time()
elapses_time = end_time - start_time
s = time.strftime('%H:%M:%S', time.gmtime(elapses_time))
log_file.write('%d, %d, %s, %.4f\n' % (epoch, i, s, so_far_hit_rate))
log_file.flush()
if agent.debug_file:
print("Example Q values", agent.q_values_saved, file=agent.debug_file)
agent.debug_file.flush()
# train for one episode finished. write log.
end_time = time.time()
elapses_time = end_time - start_time
s = time.strftime('%H:%M:%S', time.gmtime(elapses_time))
if write_log:
log_file.write('Total %d, %s, %.4f\n' % (epoch, s, (assigned_epoch / (assigned_epoch + missed_epoch + 1e-8))))
if log_file is not None:
log_file.close()
s = time.strftime('%H:%M:%S', time.gmtime(time.time() - total_start_time))
print("Total train, ", s)
# save model data
if save_model:
agent.save_model("%s/%s_model_data" % (model_save_folder, file_name))
return agent
def evaluate(city: City,
agent: Agent,
epochs=10,
time_steps=100,
load_model=None,
load_directory=None,
export_result=True,
save_folder='./result',
export_q_value_image=False,
original_G =None,
export_q_value_image_per=10,
verbose=False,
epsilon_min=0.0,
return_dict=None,
**kwargs):
'''
Function for evaluation.
:param city: road network environment
:param agent: agent strategy such as random, proportional, GCN_DQN.
:param epochs: total number of episode
:param time_steps: total number of time steps for single episode
:param load_model: path to model data to load.
:param load_directory: directory to load model
:param export_result: whether to export test result.
:param save_folder: path to create result log.
:param export_q_value_image: Visualize q values at each time step. This is only for real case.
:param original_G: Original road network graph. This is NOT a line graph conversed one.
:param export_q_value_image_per: Export q value images per.
:param epsilon_min : minimum exploration percentage
:param return_dict : return dictionary
:return: mean and std of order response rate.
'''
total_assigned = []
total_missed = []
total_percentages = []
start_time = time.time()
city.random_seed = False
if load_model is not None:
print("Load", load_model)
agent.load_model(load_model)
elif load_directory is not None:
# automatically find file from load_directory
target_name = "%s/%s_%s_*" % (load_directory, city.name, agent.name)
files = glob.glob(target_name)
print("Found", files[0])
agent.load_model(files[0])
agent.set_eval_mode()
seed = 0
current_time_info = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
f = None
if export_result:
if not os.path.exists(save_folder):
os.makedirs(save_folder)
file_name = "%s/%s_%s_%s_result.txt" % (save_folder, city.name, agent.name, current_time_info)
f = open(file_name, 'w')
f.write('%s\t%s\t%s\n' % ('total_assigned', 'total_missed', 'served_rate'))
f.flush()
for e in range(epochs):
total_assigned_epoch = 0
total_missed_epoch = 0
np.random.seed(e)
# Initialize city.
city.reset()
city.seed = seed
observations = city.initialize()
# Set exploration
city.epsilon = epsilon_min
print("Epsilon set to", epsilon_min)
for i in range(time_steps):
seed = seed + 1
city.seed = seed
policy = agent.get_policy(observations)
# Export Q value images
if export_q_value_image and isinstance(agent, DQNAgent) and (i % export_q_value_image_per) == 0:
q_values = agent.q_values.cpu().squeeze().tolist()
for edge in original_G.edges(data=True):
u, v, data = edge
road_index = city.get_road(u, v)
q = q_values[road_index]
q = max(min(q, 1), 0)
data['q_value'] = q
data['q_value_color'] = (q, 1-q, 0)
ec = [k['q_value_color'] for u, v, k in original_G.edges(data=True)]
ox.plot_graph(original_G, fig_height=10, show=False, save=True,
filename='q_values_at%d' % i, file_format='svg', node_size = 0, edge_color = ec)
print("exported Graph")
next_observations, assigned, missed = city.step(policy=policy)
total_assigned_epoch += assigned
total_missed_epoch += missed
so_far_hit_rate = total_assigned_epoch / (total_assigned_epoch + total_missed_epoch + 1e-8)
if verbose:
print("hit rate so far: %.4f" % so_far_hit_rate)
observations = next_observations
hit_rate = total_assigned_epoch / (total_assigned_epoch + total_missed_epoch)
print("Order response rate in this episode:", hit_rate)
total_assigned.append(total_assigned_epoch)
total_missed.append(total_missed_epoch)
total_percentages.append(hit_rate)
# write final order response rate in this episode.
if export_result:
f.write('%d\t%d\t%.4f\n' % (total_assigned_epoch, total_missed_epoch, hit_rate))
f.flush()
# print elapsed time
end_time = time.time()
elapses_time = end_time - start_time
s = time.strftime('%H:%M:%S', time.gmtime(elapses_time))
print(s)
# total order response rate.
total_missed_n = sum(i for i in total_missed)
total_assigned_n = sum(i for i in total_assigned)
total_p = total_assigned_n / (total_assigned_n + total_missed_n)
print("Total percentage:", total_p)
# mean, std of order response rate for each episode.
import statistics
mean = statistics.mean(total_percentages)
if len(total_percentages) > 1:
std = statistics.stdev(total_percentages)
else:
std = 0
print("Total percentage 2:", mean, std)
## this is for test.
# export final result.
if export_result:
f.write('%d\t%d\t%.4f\n' % (total_assigned_n, total_missed_n, total_p))
f.close()
if return_dict is not None:
return_dict[agent.name] = (total_p, mean, std)
return mean, std
def make_agent_from_params(city, **kwargs):
model_type = kwargs["model_type"]
if model_type == 'random':
return RandomAgent()
elif model_type == 'proportional':
return ProportionalAgent(city, **kwargs)
else:
return DQNAgent(city, **kwargs)
def make_city_from_params(**kwargs):
osmnx_g = ox.load_graphml(kwargs["graph_data"])
speed_info = SpeedInfo(kwargs["speed_info_data"])
for edge in osmnx_g.edges(data=True):
u, v, data = edge
data['u'] = u
data['v'] = v
data['speed_info_closest_road_index'] = speed_info.road_names_dict[data['speed_info_closest_road']]
g = dgl.DGLGraph()
g.from_networkx(osmnx_g, edge_attrs=['length', 'u', 'v', 'speed_info_closest_road_index'])
g_line = g.line_graph(shared=True)
driver_initializer = BootstrapDriverInitializer(kwargs["driver_initializer_data"])
call_generator = BootstrapCallGenerator(kwargs["call_generator_data"])
total_driver_number_per_time = TotalDriverCount(kwargs["total_driver_number_per_time_data"])
city = City(
G=g_line,
call_generator=call_generator,
driver_initializer=driver_initializer,
total_driver_number_per_time=total_driver_number_per_time,
speed_info=speed_info,
**kwargs
)
return city
def evaluate_from_params(**kwargs):
if kwargs["model_type"] == "gat" or kwargs["model_type"] == "gcn":
os.environ["CUDA_VISIBLE_DEVICES"] = str(kwargs.get("gpu_id", 0))
with torch.no_grad():
city = make_city_from_params(**kwargs) #City(**kwargs)
agent = make_agent_from_params(city, **kwargs)
evaluate(city, agent, **kwargs)
else:
city = make_city_from_params(**kwargs) #City(**kwargs)
agent = make_agent_from_params(city, **kwargs)
evaluate(city, agent, **kwargs)
def train_from_params(**kwargs):
os.environ["CUDA_VISIBLE_DEVICES"] = str(kwargs.get("gpu_id", 0))
city = make_city_from_params(**kwargs) # City(**kwargs)
agent = make_agent_from_params(city, **kwargs)
train(city, agent, **kwargs)
def evaluate_using_multiprocessing(common_parameters, kwargs_list):
save_folder = common_parameters["save_folder"]
if not os.path.exists(save_folder):
os.makedirs(save_folder)
print("Evaluation started")
processes = []
manager = mp.Manager()
return_dict = manager.dict()
for kwargs in kwargs_list:
p = mp.Process(target=evaluate_from_params, kwargs={**common_parameters, **kwargs, "return_dict": return_dict})
p.start()
processes.append(p)
for p in processes:
p.join()
names = list(return_dict.keys())
names = sorted(names)
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
total_output_file = open("%s/total_result_%s.txt" % (common_parameters['save_folder'], current_time), 'w')
total_output_file.write("%s\t%s\t%s\t%s\n" % ("name", "total_percentage", "mean", "std"))
for name in names:
v = return_dict[name]
total_p, mean, std = v
total_output_file.write("%s\t%.6f\t%.6f\t%.6f\n" % (name, total_p, mean, std))
def train_using_multiprocessing(common_parameters, kwargs_list):
if not os.path.exists(common_parameters["log_save_folder"]):
os.makedirs(common_parameters["log_save_folder"])
if not os.path.exists(common_parameters["model_save_folder"]):
os.makedirs(common_parameters["model_save_folder"])
print("Train started")
processes = []
for kwargs in kwargs_list:
p = mp.Process(target=train_from_params, kwargs={**common_parameters, **kwargs})
p.start()
processes.append(p)
for p in processes:
p.join()