Pure Python version of Toposcale packaged as a Pypi library. Toposcale is an original idea of Joel Fiddes to perform topography-based downscaling of climate data to the hillslope scale.
Documentation avalaible: https://topopyscale.readthedocs.io
References:
- Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
- Fiddes, J. and Gruber, S.: TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales, Geosci. Model Dev., 5, 1245–1257, https://doi.org/10.5194/gmd-5-1245-2012, 2012.
Kristoffer Aalstad has a Matlab implementation: https://github.com/krisaalstad/TopoLAB
Please follow these simple rules:
- a bug -> fix it!
- an idea or a bug you cannot fix? -> create a new issue if none doesn't already exist. If one exist, then add material to tit.
- wanna develop a new feature/idea? -> create a new branch. Do the development. Merge with main branch when accomplished.
- Create release version when significant improvements and bug fixes have been done. Coordinate with others
Create a new release: Follow procedure and conventions described in: https://www.youtube.com/watch?v=Ob9llA_QhQY
And check out our Slack: tscaleworkspace.slack.com
Contributors to the current version (2021) are:
- Simon Filhol
- Joel Fiddes
- Kristoffer Aalstad
- Inputs
- Climate data from reanalysis (ERA5, etc)
- Climate data from future projections (CORDEX) (not avail.)
- DEM from local source, or fetch from public repository: SRTM, ArcticDEM, ASTER
- Run TopoScale
- compute derived values (from DEM)
- toposcale (k-mean clustering)
- interpolation (bilinear, inverse square dist.)
- Output
- Cryogrid format
- FSM format
- CROCUS format
- Snowmodel format
- basic netcfd
- For each method, have the choice to output either the abstract cluster points, or the gridded product after interpolation
- Validation toolset
- validation to local observation timeseries
- plotting
- Gap filling algorithm
- random forest temporal gap filling
Validation (4) and Gap filling (4) are future implementation.
conda install mamba -n base -c conda-forge
mamba create -n downscaling ipython numpy pandas xarray matplotlib netcdf4 ipykernel scikit-learn rasterio gdal pyproj
conda activate downscaling
pip install cdsapi
pip install h5netcdf
pip install topocalc
pip install pvlib
pip install elevation
pip install configobj
pip install lazydocs
cd github # navigate to where you want to clone TopoPyScale
git clone [email protected]:ArcticSnow/TopoPyScale.git
pip install -e TopoPyScale #install a development version
#----------------------------------------------------------
# OPTIONAL: if using jupyter lab
# add this new Python kernel to your jupyter lab PATH
python -m ipykernel install --user --name downscaling
Then you need to setup your cdsapi
with the Copernicus API key system. Follow this tutorial after creating an account with Copernicus. On Linux, create a file nano ~/.cdsapirc
with inside:
url: https://cds.climate.copernicus.eu/api/v2
key: {uid}:{api-key}
- Setup your Python environment
- Create your project directory
- Configure the file
config.ini
to fit your problem (seeconfig.ini
for an example) - Run TopoPyScale
import pandas as pd
from TopoPyScale import topoclass as tc
from matplotlib import pyplot as plt
# ========= STEP 1 ==========
# Load Configuration
config_file = './config.ini'
mp = tc.Topoclass(config_file)
# Compute parameters of the DEM (slope, aspect, sky view factor)
mp.compute_dem_param()
# ========== STEP 2 ===========
# Extract DEM parameters for points of interest (centroids or physical points)
mp.extract_topo_param()
# ----- Option 1:
# Compute clustering of the input DEM and extract cluster centroids
#mp.extract_dem_cluster_param()
# plot clusters
#mp.toposub.plot_clusters_map()
# plot sky view factor
#mp.toposub.plot_clusters_map(var='svf', cmap=plt.cm.viridis)
# ------ Option 2:
# inidicate in the config file the .csv file containing a list of point coordinates (!!! must same coordinate system as DEM !!!)
#mp.extract_pts_param(method='linear',index_col=0)
# ========= STEP 3 ==========
# compute solar geometry and horizon angles
mp.compute_solar_geometry()
mp.compute_horizon()
# ========= STEP 4 ==========
# Perform the downscaling
mp.downscale_climate()
# ========= STEP 5 ==========
# explore the downscaled dataset. For instance the temperature difference between each point and the first one
(mp.downscaled_pts.t-mp.downscaled_pts.t.isel(point_id=0)).plot()
plt.show()
# ========= STEP 6 ==========
# Export output to desired format
mp.to_netcdf()
TopoClass will create a file structure in the project folder (see below). TopoPyScale assumes you have a DEM in GeoTiFF, and a set of climate data in netcdf (following ERA5 variable conventions).
TopoPyScale can easier segment the DEM using clustering (e.g. K-mean), or a list of predefined point coordinates in pts_list.csv
can be provided. Make sure all parameters in config.ini
are correct.
my_project/
├── inputs/
├── dem/
├── my_dem.tif
└── pts_list.csv (optional)
└── climate/
├── PLEV*.nc
└── SURF*.nc
├── outputs/
└── config.ini