-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathmain.py
128 lines (105 loc) · 4.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse, os, time
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from drrn import DRRN
from dataset import DatasetFromHdf5
# Training settings
parser = argparse.ArgumentParser(description="Pytorch DRRN")
parser.add_argument("--batchSize", type=int, default=128, help="Training batch size")
parser.add_argument("--nEpochs", type=int, default=50, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.1, help="Learning Rate, Default=0.1")
parser.add_argument("--step", type=int, default=5, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default=5")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint, Default=None")
parser.add_argument("--start-epoch", default=1, type = int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--clip", type=float, default=0.01, help="Clipping Gradients, Default=0.01")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default=1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default=0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="Weight decay, Default=1e-4")
parser.add_argument("--pretrained", default="", type=str, help='path to pretrained model, Default=None')
def main():
global opt, model
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5("data/train_291_32_x234.h5")
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print("===> Building model")
model = DRRN()
criterion = nn.MSELoss(size_average=False)
print("===> Setting GPU")
if cuda:
model = torch.nn.DataParallel(model).cuda()
criterion = criterion.cuda()
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("===> loading checkpoint: {}".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("===> no checkpoint found at {}".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("===> load model {}".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("===> no model found at {}".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch)
# os.system("python eval.py --cuda --model=model/model_epoch_{}.pth".format(epoch))
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = opt.lr * (0.5 ** (epoch // opt.step))
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
# lr policy
lr = adjust_learning_rate(optimizer, epoch-1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if opt.cuda:
input = input.cuda()
target = target.cuda()
loss = criterion(model(input), target)
optimizer.zero_grad()
loss.backward()
# Gradient Clipping
clip = opt.clip / lr
nn.utils.clip_grad_norm(model.parameters(), clip)
optimizer.step()
if iteration%100 == 0:
lc_time = time.asctime( time.localtime(time.time()) )
print("===> {} Epoch[{}]({}/{}): Loss: {:.10f}".format(lc_time, epoch, iteration, len(training_data_loader), loss.data[0]))
def save_checkpoint(model, epoch):
model_out_path = "model/" + "model_epoch_{}.pth".format(epoch)
state = {"epoch": epoch, "model": model}
# check path status
if not os.path.exists("model/"):
os.makedirs("model/")
# save model
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
if __name__ == "__main__":
main()