This repository has been archived by the owner on Sep 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransforms.cpp
429 lines (385 loc) · 14.2 KB
/
Transforms.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#pragma once
#include "stdafx.h"
double FourierTransformAngularFrequency(double w, Function f) //w must be a real number
{ /* evaluates the FourierTF of some function
in the time domain at a frequency, w.
Assumes w is a real valued variable only.
Integral bounds are [-infinity,infinity]
FTF = integral [-inf,inf]: ( f(x)* [cos(2*PI*w*x) - i sin(2*PI*w*x)] ) dx */
const int n = 50 * 3; //use n abscissa points, the roots of Hermite Polynomial P_n(x)
std::vector<double> x = GaussHermiteTable();
double answer = 0;
//Hermite polynomial coefficients are symmetric -- we must run the loop once with negative values,
//and once with negative values. The following method is a neat way to perform both operations at once.
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(-x[i]) * cos(w*-x[i]);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
temp = x[i + 2] * f.evaluate(x[i]) * cos(w*x[i]);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double FourierTransform(double w, Function f) //w must be a real number
{ /* evaluates the FourierTF of some function
in the time domain at a frequency, w.
Assumes w is a real valued variable only.
Integral bounds are [-infinity,infinity]
FTF = integral [-inf,inf]: ( f(x)* [cos(2*PI*w*x) - i sin(2*PI*w*x)] ) dx */
const int n = 50 * 3; //use n abscissa points, the roots of Hermite Polynomial P_n(x)
std::vector<double> x = GaussHermiteTable();
double answer = 0;
//Hermite polynomial coefficients are symmetric -- we must run the loop once with negative values,
//and once with negative values. The following method is a neat way to perform both operations at once.
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(-x[i]) * cos(2 * PI*w*-x[i]);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
temp = x[i + 2] * f.evaluate(x[i]) * cos(2 * PI*w*x[i]);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double inverseFourierTransform(double w, Function f) {
/*Note: Since we have defined the Fourier over R as simply the cosine term of the
Fourier TF integral, the same formula works for the inverse. Thus, we do not need to
calculate the '+ i sin(2*PI*w*x)' term since we don't care about the imaginary value. */
return FourierTransform(w, f);
}
double LaplaceTransform(double s, Function f) {
/* evaluates the LaplaceTF of some function
in the time domain at a complex frequency, s.*/
const int n = 100 * 3; //use n abscissa points, the roots of Laguerre Polynomial P_n(x)
std::vector<long double> x = GaussLaguerreTable();
double answer = 0;
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(x[i]) * exp(-1 * s*x[i]);//sum w_i*f(x_i)*e^-sx
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double twoSidedLaplaceTransform(double s, Function f) {
/* evaluates the LaplaceTF of some function
in the time domain at a complex frequency, s.*/
const int n = 50 * 3; //use n abscissa points, the roots of Hermite Polynomial P_n(x)
std::vector<double> x = GaussHermiteTable();
double answer = 0;
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(x[i]) * exp(-1 * s*x[i]);//sum w_i*f(x_i)*e^-sx
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double MellinTransform(double s, Function f)
{ /* evaluates the MellinTF of some function
in the time domain at a complex frequency, s.*/
const int n = 100 * 3; //use n abscissa points, the roots of Laguerre Polynomial P_n(x)
std::vector<long double> x = GaussLaguerreTable();
double answer = 0;
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(x[i]) * pow(x[i], s - 1);//sum w_i*f(x_i)*x^s-1
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double twoSidedMellinTransform(double s, Function f)
{ /* evaluates the MellinTF of some function
in the time domain at a complex frequency, s.*/
const int n = 50 * 3; //use n abscissa points, the roots of Laguerre Polynomial P_n(x)
std::vector<double> x = GaussHermiteTable();
double answer = 0;
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f.evaluate(x[i]) * pow(x[i], s - 1);//sum w_i*f(x_i)*x^s-1
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
double convolve1D(double t, Function f1, Function f2) { //convolution is equivalent to multiplication in the frequency domain.
const int n = 50 * 3; //use n abscissa points, the roots of Hermite Polynomial P_n(x)
std::vector<double> x = GaussHermiteTable();
double answer = 0;
//Hermite polynomial coefficients are symmetric -- we must run the loop once with negative values,
//and once with negative values. The following method is a neat way to perform both operations at once.
for (int i = 0; i < n; i += 3) {
double temp = x[i + 2] * f1.evaluate(t) * f2.evaluate(x[i] - t);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
temp = x[i + 2] * f1.evaluate(t) * f2.evaluate(x[i] - t);//sum w_i*f(x_i)*cos(-2Pi * wx)
if (temp == temp) { answer += temp; }//reject crazy values (i.e. singularities)
}
x.clear();
return answer;
}
std::vector<ComplexNumber> discreteFourierTransform(std::vector<double> data) {
std::vector<ComplexNumber> c;
for (int i = 0; i < data.size(); ++i) {
c.push_back(ComplexNumber(data[i]));
}
return discreteFourierTransform(c);
}
std::vector<ComplexNumber> discreteFourierTransform(std::vector<ComplexNumber> data) {
int N = data.size();
std::vector<ComplexNumber> data2;
for (int k = 0; k < data.size(); ++k) {
std::complex<double> answer(0);
for (int i = 0; i <= N-1; ++i) {
std::complex<double> c = data[i].toComplex();
double val = 2*PI*k*i / N;
std::complex<double> z(cos(val),-sin(val));
c *= z;
answer += c;
}
data2.push_back(answer);
}
return data2;
}
std::vector<ComplexNumber> discreteFourierTransform(std::vector<double> x, Function f) {
std::vector<double> vec;
for (int i = 0; i < x.size(); ++i) {
vec.push_back(f.evaluate(x[i]));
}
return discreteFourierTransform(vec);
}
std::vector<ComplexNumber> discreteFourierTransform(std::vector<ComplexNumber> x, ComplexFunction f) {
std::vector<ComplexNumber> vec;
for (int i = 0; i < x.size(); ++i) {
vec.push_back(f.evaluateComplex(x[i]));
}
return discreteFourierTransform(vec);
}
ComplexMatrix discreteFourierTransform(Matrix A) {
ComplexMatrix CM = A.toComplexMatrix();
return discreteFourierTransform(CM);
}
ComplexMatrix discreteFourierTransform(ComplexMatrix A) {//computer DFT of input vector by matrix transform
//pad matrix A if non-square
/* if (A.rows != A.columns) {
while (A.rows > A.columns) {
A = A.extendColumns(1);
}
while (A.rows < A.columns) {
A = A.extendRows(1);
}
}*/
int N = A.rows;
double val = 2 * PI / N;
ComplexMatrix DFTMat(N, N);
for (int i = 0; i < N; ++i) {
for (int j = i; j < N; ++j) {
ComplexNumber temp = pow(ComplexNumber(cos(val),-sin(val)), i*j);
DFTMat.element[i*N + j] = temp;
if (i != j) { DFTMat.element[j*N + i] = temp; }
}
}
return A.multiply(DFTMat,A);
}
std::vector<ComplexNumber> inverseDiscreteFourierTransform(std::vector<double> data) {
std::vector<ComplexNumber> c;
for (int i = 0; i < data.size(); ++i) {
c.push_back(ComplexNumber(data[i]));
}
return inverseDiscreteFourierTransform(c);
}
std::vector<ComplexNumber> inverseDiscreteFourierTransform(std::vector<ComplexNumber> data) {
double N = data.size();
std::vector<ComplexNumber> data2;
for (int k = 0; k < data.size(); ++k) {
std::complex<double> answer(0);
for (int i = 0; i <= N - 1; ++i) {
std::complex<double> c = data[i].toComplex();
double val = 2 * PI*k*i / N;
std::complex<double> z(cos(val), sin(val));
c *= z;
answer += c;
}
data2.push_back(answer/N);
}
return data2;
}
ComplexMatrix inverseDiscreteFourierTransform(Matrix A) {
ComplexMatrix CM = A.toComplexMatrix();
return inverseDiscreteFourierTransform(CM);
}
ComplexMatrix inverseDiscreteFourierTransform(ComplexMatrix A) {//computer inverse DFT of input vector by matrix transform
int N = A.rows;
double val = 2 * PI / N;
ComplexMatrix DFTMat(N,N);
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
DFTMat.element[i*N + j] = pow(ComplexNumber(cos(val), sin(val)), i*j);
}
}
DFTMat = DFTMat.multiply(DFTMat, 1.0 / N);
return A.multiply(DFTMat,A);
}
std::vector<ComplexNumber> fastFourierTransform(std::vector<ComplexNumber> data) {
ComplexNumber* dta = new ComplexNumber[data.size()];
ComplexNumber* temp = new ComplexNumber[data.size()];
fft(dta, temp, data.size(), data.size());
std::vector<ComplexNumber> vec = toSTLVector(dta, data.size());
return vec;
}
void fft(ComplexNumber *data, ComplexNumber *temp, int n, int ndata) {
ComplexNumber circle[((1 << 18) / 2) + 1];
int seqlen;
//knock off least significant digit of data
seqlen = ndata;
if (seqlen > 0) {
while (!isPowerOfTwo(seqlen)) { seqlen &= (seqlen - 1); } /* knock off least sig. 1 bit */
while (!seqlen >= ndata) { seqlen <<= 1; }
/* seqlen is now the least power of 2 .ge. ndata */
while (ndata < seqlen) data[ndata++] = 0.0;
}
//set up circle
for (int i = 0; i <= seqlen / 2; i++) { /* actually a semicircle; n.b. extra slot for window computation */
double x = (2 * PI * i) / seqlen;
circle[i].Re = cos(x);
circle[(seqlen / 2) - i - 1].Re = cos(x);
circle[i].Im = sin(x);
circle[(seqlen / 2) - i - 1] = -sin(x);
}
if (n > 1) {
int h = n / 2;
for (int i = 0; i < h; i++) {
int i2 = i * 2;
temp[i] = data[i2]; /* even */
temp[h + i] = data[i2 + 1]; /* odd */
}
fft(&temp[0], &data[0], h, seqlen);
fft(&temp[h], &data[h], h, seqlen);
int p = 0, t = seqlen / n;
for (int i = 0; i < h; i++)
{
ComplexNumber wkt = circle[p] * temp[h + i];
data[i] = temp[i] + wkt;
data[h + i] = temp[i] - wkt;
p += t;
}
}
}
Matrix discreteCosineTransform(std::vector<double> data) {
//for examples, see: http://eeweb.poly.edu/~yao/EE3414/ImageCoding_DCT.pdf
int N = data.size();
if (N < 2) { return Matrix(); }
std::vector<double> data2(N*N);
for (int k = 0; k <= N-1; ++k) {
for (int i = 0; i <= N - 1; ++i) {
double answer = 0;
answer = cos(PI*k*(2 * i + 1) / (2 * N));
if (k == 0) { answer *= sqrt(1.0 / N); }
else { answer *= sqrt(2.0 / N); }
data2[k*N + i] = answer;
}
}
Matrix DCT(N,N,data2);
Matrix vec(N, 1, data);
return DCT.multiply(DCT, vec);
}
Matrix discreteCosineTransform(Matrix data) {
//for examples, see: http://eeweb.poly.edu/~yao/EE3414/ImageCoding_DCT.pdf
if (data.rows < 2 || data.columns < 1) { return Matrix(); }
if (data.columns == 1) {
std::vector<double> vec;
for (int i = 0; i < data.rows; ++i) {
vec.push_back(data.element[i]);
}
return discreteCosineTransform(vec);
}
//initialize all vectors u_n
std::vector<std::vector<double>> vecs;
int N = data.rows;
for (int k = 0; k <= N - 1; ++k) {
std::vector<double> data2(N);
for (int i = 0; i <= N - 1; ++i) {
double answer = 0;
answer = cos(PI*k*(2 * i + 1) / (2 * N));
if (k == 0) { answer *= sqrt(1.0 / N); }
else { answer *= sqrt(2.0 / N); }
data2[i] = answer;
}
vecs.push_back(data2);
}
//create matrices by calculating outerProduct(u_i, u_j), multiplying by data matrix, and summing the resulting values
std::vector<double> elements;
for (int k = 0; k <= N - 1; ++k) {
for (int l = 0; l <= N - 1; ++l) {
Vector v1(vecs[k]);
Vector v2(vecs[l]);
Matrix DCT = v1.outerProduct(v1, v2);
Matrix Hadm = DCT.HadamardProduct(DCT, data);
elements.push_back(Hadm.sumAll());
}
}
return Matrix(data.rows, data.columns, elements);
}
Matrix inverseDiscreteCosineTransform(std::vector<double> X){
//for examples, see: http://eeweb.poly.edu/~yao/EE3414/ImageCoding_DCT.pdf
int N = X.size();
if (N < 2) { return Matrix(); }
std::vector<double> data2(N*N);
for (int k = 0; k <= N - 1; ++k) {
for (int i = 0; i <= N - 1; ++i) {
double answer = 0;
answer = cos(PI*k*(2 * i + 1) / (2 * N));
if (k == 0) { answer *= sqrt(1.0 / N); }
else { answer *= sqrt(2.0 / N); }
data2[k*N + i] = answer;
}
}
Matrix DCT(N, N, data2);
Matrix DCT2 = DCT.transpose();
Matrix vec(N, 1, X);
return DCT.multiply(DCT2, vec);
}
Matrix inverseDiscreteCosineTransform(Matrix data) {
//for examples, see: http://eeweb.poly.edu/~yao/EE3414/ImageCoding_DCT.pdf
/* if (data.rows < 2 || data.columns < 1) { return Matrix(); }
if (data.columns == 1) {
std::vector<double> vec;
for (int i = 0; i < data.rows; ++i) {
vec.push_back(data.element[i]);
}
return inverseDiscreteCosineTransform(vec);
}
//initialize all vectors u_n
std::vector<std::vector<double>> vecs;
int N = data.rows;
for (int k = 0; k <= N - 1; ++k) {
std::vector<double> data2(N);
for (int i = 0; i <= N - 1; ++i) {
double answer = 0;
answer = cos(PI*k*(2 * i + 1) / (2 * N));
if (k == 0) { answer *= sqrt(1.0 / N); }
else { answer *= sqrt(2.0 / N); }
data2[i] = answer;
}
vecs.push_back(data2);
}
//create matrices by calculating outerProduct(u_i, u_j), multiplying by data matrix, and summing the resulting values
std::vector<double> elements;
for (int k = 0; k <= N - 1; ++k) {
for (int l = 0; l <= N - 1; ++l) {
Vector v1(vecs[k]);
Vector v2(vecs[l]);
Matrix DCT = v1.outerProduct(v2, v1);
//Matrix DCT2 = DCT.inverse();
Matrix Hadm = DCT.HadamardProduct(DCT, data);
elements.push_back(Hadm.sumAll());
}
}
return Matrix(data.rows, data.columns, elements); */
std::vector<std::vector<double>> elm;
for (int m = 0; m < data.columns; ++m) {
std::vector<double> vec = data.column(m);
Matrix M = inverseDiscreteCosineTransform(vec);
vec.clear();
for (int i = 0; i < M.rows; ++i) {
vec.push_back(M.element[i]);
}
elm.push_back(vec);
}
return Matrix(elm);
}