forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistributionKernels.cpp
164 lines (139 loc) · 6.86 KB
/
DistributionKernels.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/Dispatch.h>
#include <ATen/Generator.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/Distributions.h>
#include <ATen/native/TensorFactories.h>
#include <ATen/native/cpu/DistributionTemplates.h>
#include <ATen/native/UnaryOps.h>
#include <cmath>
#include <limits>
#include <type_traits>
#if AT_MKL_ENABLED()
#include <mkl.h>
#include <cpuinfo.h>
#endif
namespace at { namespace native {
namespace {
static void cauchy_kernel(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::cauchy_kernel(iter, median, sigma, generator);
}
void bernoulli_tensor_kernel(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::bernoulli_kernel(self, p_, generator);
}
void bernoulli_scalar_kernel_default(Tensor& self, double p, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::bernoulli_kernel(self, p, generator);
}
#if !AT_MKL_ENABLED()
void bernoulli_scalar_kernel(Tensor& self, double p, c10::optional<Generator> gen) {
bernoulli_scalar_kernel_default(self, p, gen);
}
#else
void bernoulli_scalar_kernel(Tensor &self, double p, c10::optional<Generator> gen) {
if (cpuinfo_initialize() && cpuinfo_vendor_intel == cpuinfo_get_processor(0)->core->vendor) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
int64_t seed;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
seed = generator->random();
}
int64_t n = self.numel();
bool contig = self.is_contiguous();
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Bool, at::ScalarType::BFloat16, self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
at::Tensor tmp_int_tensor;
if (std::is_same<scalar_t, int>::value && contig) {
tmp_int_tensor = self;
} else {
tmp_int_tensor = at::empty(self.sizes(), self.options().dtype(at::kInt));
}
scalar_t *self_ptr = self.data_ptr<scalar_t>();
int *sample_int_ptr = tmp_int_tensor.data_ptr<int>();
auto sample = [&](int64_t begin, int64_t end) {
int64_t len = end - begin;
if (len > 0) {
VSLStreamStatePtr stream;
vslNewStream(&stream, VSL_BRNG_MCG31, seed);
vslSkipAheadStream(stream, begin);
viRngBernoulli(VSL_RNG_METHOD_BERNOULLI_ICDF, stream, len,
sample_int_ptr + begin, p);
vslDeleteStream(&stream);
// vectorized copy if using buffer and contiguous, i.e., being non-int
// type and contiguous
if (!std::is_same<scalar_t, int>::value && contig) {
scalar_t *self_seg = self_ptr + begin;
int* tmp_seg = sample_int_ptr + begin;
at::vec::convert<int, scalar_t>(tmp_seg, self_seg, len);
}
}
};
parallel_for(0, n, /* grain_size= */ 800, sample);
// copy_ if using buffer and non contiguous
if (!contig) {
self.copy_(tmp_int_tensor);
}
});
} else {
// The situation of AMD, move to using the default version
bernoulli_scalar_kernel_default(self, p, gen);
}
}
#endif
static void exponential_kernel(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::exponential_kernel(iter, lambda, generator);
}
static void geometric_kernel(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::geometric_kernel(iter, p, generator);
}
static void log_normal_kernel(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::log_normal_kernel(iter, mean, std, generator);
}
void uniform_kernel(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::uniform_kernel(iter, from, to, generator);
}
void normal_kernel(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::normal_kernel(self, mean, std, generator);
}
static void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::random_from_to_kernel(iter, range, base, generator);
}
static void random_kernel(TensorIteratorBase& iter, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::random_kernel(iter, generator);
}
// This is the special kernel to handle single specific case:
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
static void random_full_64_bits_range_kernel(TensorIteratorBase& iter, c10::optional<Generator> gen) {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
templates::cpu::random_full_64_bits_range_kernel(iter, generator);
}
} // namespace (anonymous)
REGISTER_DISPATCH(bernoulli_tensor_stub, &bernoulli_tensor_kernel);
REGISTER_DISPATCH(bernoulli_scalar_stub, &bernoulli_scalar_kernel);
REGISTER_DISPATCH(cauchy_stub, &cauchy_kernel);
REGISTER_DISPATCH(exponential_stub, &exponential_kernel);
REGISTER_DISPATCH(geometric_stub, &geometric_kernel);
REGISTER_DISPATCH(log_normal_stub, &log_normal_kernel);
#ifdef CPU_CAPABILITY_AVX512
// normal_stub isn't being dispatched to AVX512 because it exposes
// flakiness in test_sgd of test/test_optim.py
REGISTER_NO_AVX512_DISPATCH(normal_stub, void(*)(Tensor&, const double, const double, c10::optional<Generator>));
#else
REGISTER_DISPATCH(normal_stub, &normal_kernel);
#endif
REGISTER_DISPATCH(uniform_stub, &uniform_kernel);
REGISTER_DISPATCH(random_from_to_stub, &random_from_to_kernel);
REGISTER_DISPATCH(random_full_64_bits_range_stub, &random_full_64_bits_range_kernel);
REGISTER_DISPATCH(random_stub, &random_kernel);
} // namespace native
} // namespace at