forked from shibing624/MedicalGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastapi_server_demo.py
209 lines (185 loc) · 6.74 KB
/
fastapi_server_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description: api start demo
usage:
CUDA_VISIBLE_DEVICES=0 python fastapi_server_demo.py --model_type bloom --base_model bigscience/bloom-560m
curl -X 'POST' 'http://0.0.0.0:8008/chat' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"input": "咏鹅--骆宾王;登黄鹤楼--"
}'
"""
import argparse
import os
from threading import Thread
import torch
import uvicorn
from fastapi import FastAPI
from loguru import logger
from peft import PeftModel
from pydantic import BaseModel, Field
from starlette.middleware.cors import CORSMiddleware
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
GenerationConfig,
)
from supervised_finetuning import get_conv_template
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
@torch.inference_mode()
def stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=True,
max_new_tokens=512,
repetition_penalty=1.0,
context_len=2048,
stop_str="</s>",
):
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
input_ids = tokenizer(prompt).input_ids
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=torch.as_tensor([input_ids]).to(device),
max_new_tokens=max_new_tokens,
do_sample=False,
num_beams=1,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
stop = False
pos = new_text.find(stop_str)
if pos != -1:
new_text = new_text[:pos]
stop = True
generated_text += new_text
if do_print:
print(new_text, end="", flush=True)
if stop:
break
if do_print:
print()
return generated_text
class Item(BaseModel):
input: str = Field(..., max_length=2048)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default=None, type=str, required=True)
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--template_name', default="vicuna", type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan, chatglm2 etc.")
parser.add_argument("--repetition_penalty", default=1.0, type=float)
parser.add_argument("--max_new_tokens", default=512, type=int)
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
parser.add_argument('--port', default=8008, type=int)
args = parser.parse_args()
print(args)
def load_model(args):
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
trust_remote_code=True,
)
try:
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
except OSError:
print("Failed to load generation config, use default.")
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
print("Loaded lora model")
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
print(tokenizer)
return model, tokenizer, device
# define the app
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"])
model, tokenizer, device = load_model(args)
prompt_template = get_conv_template(args.template_name)
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str
def predict(sentence):
history = [[sentence, '']]
prompt = prompt_template.get_prompt(messages=history)
response = stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=False,
max_new_tokens=args.max_new_tokens,
repetition_penalty=args.repetition_penalty,
stop_str=stop_str,
)
return response.strip()
@app.get('/')
async def index():
return {"message": "index, docs url: /docs"}
@app.post('/chat')
async def chat(item: Item):
try:
response = predict(item.input)
result_dict = {'response': response}
logger.debug(f"Successfully get result, q:{item.input}")
return result_dict
except Exception as e:
logger.error(e)
return None
uvicorn.run(app=app, host='0.0.0.0', port=args.port, workers=1)
if __name__ == '__main__':
main()