Skip to content

Latest commit

 

History

History
210 lines (154 loc) · 8.46 KB

README.md

File metadata and controls

210 lines (154 loc) · 8.46 KB

tinyMapper

A minimalist yet versatile workflow to process ChIP-seq (with or without input/spikein), RNA-seq, MNase-seq and ATAC-seq data.
tinyMapper can also operate as a thin wrapper to process HiC data with hicstuff (Cyril Matthey-Doret et al.) and cooler.
Currently, this workflow only works for paired-end data.

DISCLAIMER:

  • This is by no means the "best" or "only" way to process sequencing data. Do not hesitate to give suggestions / feedbacks to improve this workflow.
  • This workflow does NOT include any proper QC / validation of the data. At the very least, do run fastqc on the sequencing data. Further QC checks are highly recommended, and will vary depending on which assay is performed.

Installation

DESTINATION=~/bin/
mkdir ${DESTINATION} 
cd ${DESTINATION}
git clone https://github.com/js2264/tinyMapper.git
conda env create -n tm -f ${DESTINATION}/tinyMapper/tinymapper.yaml
echo 'export PATH=$PATH:"'${DESTINATION}'/tinyMapper/"' >> ~/.bashrc
conda activate tm
tinyMapper.sh --help

In more details:

  • Choose a directory to install tinyMapper in (typically, a local ~/bin/ directory is appropriate here):
DESTINATION=~/bin/
mkdir ${DESTINATION} 
cd ${DESTINATION}
  • Clone tinyMapper's GitHub repository:
git clone https://github.com/js2264/tinyMapper.git
  • Install tinyMapper requirements using conda (assumes that conda is already installed...):
conda env create -n tm -f ${DESTINATION}/tinyMapper/tinymapper.yaml
  • Add tinyMapper script to your PATH so you can call it by tinyMapper.sh, rather than ~/bin/tinyMapper/tinyMapper.sh:
echo 'export PATH=$PATH:"'${DESTINATION}'/tinyMapper/"' >> ~/.bashrc
  • Activate the created conda environemnt and start using tinyMapper.sh:
conda activate tm
tinyMapper.sh --help

Usage

Usage: ./tinyMapper.sh --mode <MODE> --sample <SAMPLE> --genome <GENOME> --output <OUTPUT> [ additional arguments ]

---------------------- BASIC ARGUMENTS -----------------------------------------

   -m|--mode <MODE>                 Mapping mode (ChIP, MNase, ATAC, RNA, HiC) (Default: ChIP)
   -s|--sample <SAMPLE>             Path prefix to sample \`<SAMPLE>_R{1,2}.fq.gz\` (e.g. for \`~/reads/JS001_R{1,2}.fq.gz\` files, use \`--sample ~/reads/JS001\`)
   -g|--genome <GENOME>             Path prefix to reference genome (e.g. for \`~/genome/W303/W303.fa\` fasta file, use \`--genome ~/genome/W303/W303\`)
   -h|--help                        Print help ('--help' for examples)


---------------------- ADVANCED ARGUMENTS --------------------------------------

   -i|--input <INPUT>               (Optional) Path prefix to input \`<INPUT>_R{1,2}.fq.gz\`
   -c|--calibration <CALIBRATION>   (Optional) Path prefix to genome used for calibration
   -bl|--blacklist <BED>            Bed file of blacklist regions
   -a|--alignment <ALIGN.>          Alignment options for \`bowtie2\` (between single quotes)
                                    Default: '' (no specific options)
   -f|--filter <FILTER>             Filtering options for \`samtools view\` (between single quotes)
                                    Default: '-f 2 -q 10' ('-f 2' to only keep concordant mapped and paired reads, '-q 10' to filter out reads with mapping quality score < 10)
   -d|--duplicates                  Keep duplicate reads
   -hic|--hicstuff <OPT>            Additional arguments passed to hicstuff (default: \`--iterative --duplicates --filter --plot\`)
   -r|--resolutions <#>             Resolution of final matrix file (default: '10000,20000,40000,160000,1280000')
   -re|--restriction <RE>           Restriction enzyme(s) used for HiC (default: Arima \`--restriction DpnII,HinfI\`)
   -M|--MNaseSizes <MIN,MAX>        Minimum and maximum fragment size for MNase track (default: \`--MNaseSizes 70,250\`)


---------------------- OUTPUT ARGUMENTS ----------------------------------------

   -t|--threads <THREADS>           (Optional) Number of threads (Default: 8)
   -o|--output <OUTPUT>             Path to store results (Default: \`./results/\`)
   -k|--keepIntermediate            (Optional) Keep intermediate mapping files

Note that fastq files shoud ideally be named following this convention:

  • Read 1: <SAMPLE>_R1.fq.gz
  • Read 2: <SAMPLE>_R2.fq.gz

Alternatively, the script will try to find paired-end files named <SAMPLE>_R[12].fastq.gz, <SAMPLE>_nxq_R[12].fq.gz, <SAMPLE>.end1.fq.gz or <SAMPLE>.end[12].gz.

Using tinyMapper on a cluster with Slurm

Make sure tinyMapper script (tinyMapper.sh) is available by adding its location to your path (echo 'export PATH=$PATH:"~/bin/tinyMapper/"' >> ~/.bashrc).

conda activate tm
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh --mode <MODE> --sample <SAMPLE> --genome <GENOME> --output <OUTPUT> --threads 8"

# For ChIP processing pipelines
# - Without input
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh -m ChIP -s tests/testChIP -g ~/appascratch/genomes/S288c/S288c  --threads 8"
# - With input and without calibration
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh -m ChIP -s tests/testChIP.IP -i tests/testChIP.input -g ~/appascratch/genomes/S288c/S288c  --threads 8"
# - With input and with calibration
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh -m ChIP -s tests/testChIP.IP -i tests/testChIP.input -g ~/appascratch/genomes/S288c/S288c -c ~/appascratch/genomes/CBS138/CBS138 --threads 8"

# For RNA processing pipelines
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh -m RNA -s tests/testRNA -g ~/appascratch/genomes/S288c/S288c --threads 8"

# For MNase processing pipelines
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh --mode MNase --sample tests/testMNase --genome ~/appascratch/genomes/S288c/S288c --threads 8"

# For Hi-C processing pipelines
sbatch --mem 40G -c 10 --wrap "tinyMapper.sh --mode HiC --sample tests/testHiC --genome ~/appascratch/genomes/S288c/S288c --threads 8"

Examples

  • ChIP-seq mode:

    • Without input:

      ./tinyMapper.sh \
          --mode ChIP \
          -s ~/testIP \
          -g ~/genomes/R64-1-1/R64-1-1 \
          -o ~/results
      
    • With input:

      ./tinyMapper.sh --mode ChIP \
          --sample ~/testIP \
          --input ~/testInput \
          --genome ~/genomes/R64-1-1/R64-1-1 \
          --output ~/results
      
    • With input and calibration:

      ./tinyMapper.sh --mode ChIP \
          --sample ~/testIP \
          --input ~/testInput \
          --genome ~/genomes/R64-1-1/R64-1-1 \
          --calibration ~/genomes/Cglabrata/Cglabrata \
          --output ~/results
      
  • RNA-seq mode:

    ./tinyMapper.sh --mode RNA -s ./testRNA -g ~/genomes/W303/W303 -o ~/results
    
  • MNase-seq mode:

    ./tinyMapper.sh --mode MNase -s ./testMNase -g ~/genomes/W303/W303 -o ~/results
    
  • HiC mode:

    ./tinyMapper.sh --mode HiC -s ./testHiC -g ~/genomes/W303/W303 -o ~/results --resolutions 1000,2000,8000 --restriction 'DpnII,HinfI'
    

Processing details

The default steps are:

  • Mapping with bowtie2 (against spikein ref. as well if needed)
  • Filtering bam files:
    • Fixing mates
    • Removing duplicates (can be skipped with --duplicates)
    • Removing reads with mapping quality < Q10 (can be adjusted / skipped with --filter <SAMTOOLS VIEW OPTIONS>)
    • Removing unpaired reads (can be adjusted / skipped with --filter <SAMTOOLS VIEW OPTIONS>)
    • For Mase: extra filtering to keep only fragments between 70-250 bp
    • For Hi-C: process fastq files with hicstuff and binnify/balance/zoomify with cooler
  • Generating tracks:
    • CPM (counts per million) tracks
    • Input and spikein-based calibrated tracks
    • For Mase: extra track for nucleosome positions
    • For RNA-seq: directed tracks (fwd and rev transcription)
  • Extracting some very succint stats on mapping results
  • Keeping everything tidy, organized, documented and reproducible. Notably, when running tinyMapper.sh, three files are generated:
    • *-log.txt: A detailed log file
    • *-commands.txt: A list of the actual commands that were executed in the pipeline
    • *-script.txt: A backup copy of the tinyMapper.sh entire script as it was at the time of the execution

Acknowledgments

  • A. Cournac, A. Bignaud & F. Girard for tests.
  • H. Bordelet for sharing her mapping scripts and configuration.
  • L. Meneu for suggestions of improvements in documentation and raising bugs.