-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProjectEuler58.py
70 lines (64 loc) · 2.52 KB
/
ProjectEuler58.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import datetime
import cProfile
import io
import pstats
# Project Euler Problem 58
# Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.
#
# 37 36 35 34 33 32 31
# 38 17 16 15 14 13 30
# 39 18 5 4 3 12 29
# 40 19 6 1 2 11 28
# 41 20 7 8 9 10 27
# 42 21 22 23 24 25 26
# 43 44 45 46 47 48 49
#
# It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%.
#
# If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%?
def profile(fnc):
"""A decorator that uses cProfile to profile a function"""
def inner(*args, **kwargs):
pr = cProfile.Profile()
pr.enable()
retval = fnc(*args, **kwargs)
pr.disable()
s = io.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())
return retval
return inner
@profile
def run():
def primes2(n):
correction = (n % 6 > 1)
n = {0: n, 1: n - 1, 2: n + 4, 3: n + 3, 4: n + 2, 5: n + 1}[n % 6]
sieve = [True] * (n // 3)
sieve[0] = False
for i in range(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = [False] * ((n // 6 - (k * k) // 6 - 1) // k + 1)
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = [False] * (
(n // 6 - (k * k + 4 * k - 2 * k * (i & 1)) // 6 - 1) // k + 1)
return [2, 3] + [3 * i + 1 | 1 for i in range(1, n // 3 - correction) if sieve[i]]
primes = set(primes2(1_000_000_000))
p = [x for x in range(2,100_001) if x%2 != 0]
squares = [x**2 for x in p]
wow = {}
primes_in_square = []
total = []
for i, x in enumerate(squares):
wow[i+2] = [x-(p[i]-1), x-(p[i]-1)*2, x-(p[i]-1)*3]
for each in wow[i+2]:
if each in primes:
primes_in_square.append(each)
total.append(4)
a = len(primes_in_square) / (sum(total) + 1)
if a < 0.1:
print(i, x, np.sqrt(x), a)
break
run()