Skip to content

jpzwolak/QFlow-suite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This document is intended as a User Guide for anyone interested in training a machine learning (ML) model using the quantum dot dataset available on data.nist.gov. For more details about the project, pease refer to the Project description document.

I. Relevant references

Details about the original dataset, as used in QFlow-lite, can be found in J.P. Zwolak et al., QFlow lite dataset: A machinelearning approach to the charge states in quantum dot experiments. PLoS ONE 13(10): e0205844 (2018).

The dataset incorporating physical noise is discussed in J. Ziegler et al., Toward Robust Autotuning of Noisy Quantum Dot Devices. arXiv:2108.00043 (2021).

II. Full list of references using the QFlow dataset

  1. S.S. Kalantre, J.P. Zwolak, S. Ragole, X. Wu, N.M. Zimmerman, M.D. Stewart, and J.M. Taylor. Machine learning techniques for state recognition and auto-tuning in quantum dots. npj Quantum Inf. 5, 6 (2019).
  2. J.P. Zwolak, S.S. Kalantre, X. Wu, S. Ragole, and J.M. Taylor. QFlow lite dataset: A machinelearning approach to the charge states in quantum dot experiments. PLoS ONE 13(10): e0205844 (2018).
  3. J.P. Zwolak, T. McJunkin, S.S. Kalantre, J.P. Dodson, E.R. MacQuarrie, D.E. Savage, M.G. Lagally, S.N. Coppersmith, M.A. Eriksson, and J.M. Taylor. Autotuning of Double-Dot Devices In Situ with Machine Learning. Phys. Rev. Applied 13(3), 034075 (2020).
  4. J.P. Zwolak, S.S. Kalantre, T. McJunkin, B.J. Weber, and J.M. Taylor. Ray-based classification framework for high-dimensional data. arXiv:2010.00500 (2020).
  5. J.P. Zwolak, T. McJunkin, S.S. Kalantre, S.F. Neyens, E. R. MacQuarrie, M.A. Eriksson, and J.M. Taylor. Ray-based framework for state identification in quantum dot devices. PRX Quantum 2(2), 020335 (2021).
  6. J. Ziegler, T. McJunkin, E.S. Joseph, S.S. Kalantre, B. Harpt, D.E. Savage, M.G. Lagally, M.A. Eriksson, J.M. Taylor, and J.P. Zwolak. Toward Robust Autotuning of Noisy Quantum Dot Devices. arXiv:2108.00043 (2021).

About

Machine learning code for quantum dots

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published