-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathPMMLBuilder.java
535 lines (390 loc) · 14.6 KB
/
PMMLBuilder.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
/*
* Copyright (c) 2018 Villu Ruusmann
*
* This file is part of JPMML-SparkML
*
* JPMML-SparkML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* JPMML-SparkML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with JPMML-SparkML. If not, see <http://www.gnu.org/licenses/>.
*/
package org.jpmml.sparkml;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.function.Function;
import java.util.regex.Pattern;
import java.util.stream.Collectors;
import javax.xml.bind.JAXBException;
import com.google.common.collect.Iterables;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.Transformer;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.param.shared.HasPredictionCol;
import org.apache.spark.ml.param.shared.HasProbabilityCol;
import org.apache.spark.ml.regression.GeneralizedLinearRegressionModel;
import org.apache.spark.ml.tuning.CrossValidatorModel;
import org.apache.spark.ml.tuning.TrainValidationSplitModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.StructType;
import org.dmg.pmml.DerivedField;
import org.dmg.pmml.FieldName;
import org.dmg.pmml.MiningField;
import org.dmg.pmml.MiningFunction;
import org.dmg.pmml.MiningSchema;
import org.dmg.pmml.Output;
import org.dmg.pmml.OutputField;
import org.dmg.pmml.PMML;
import org.dmg.pmml.ResultFeature;
import org.dmg.pmml.VerificationField;
import org.jpmml.converter.Feature;
import org.jpmml.converter.ModelUtil;
import org.jpmml.converter.mining.MiningModelUtil;
import org.jpmml.model.metro.MetroJAXBUtil;
public class PMMLBuilder {
private StructType schema = null;
private PipelineModel pipelineModel = null;
private Map<RegexKey, Map<String, Object>> options = new LinkedHashMap<>();
private Verification verification = null;
public PMMLBuilder(StructType schema, PipelineModel pipelineModel){
setSchema(schema);
setPipelineModel(pipelineModel);
}
public PMMLBuilder(StructType schema, PipelineStage pipelineStage){
throw new IllegalArgumentException("Expected a fitted pipeline model (class " + PipelineModel.class.getName() + "), got a pipeline stage (" + (pipelineStage != null ? ("class " + (pipelineStage.getClass()).getName()) : null) + ")");
}
public PMML build(){
StructType schema = getSchema();
PipelineModel pipelineModel = getPipelineModel();
Map<RegexKey, ? extends Map<String, ?>> options = getOptions();
Verification verification = getVerification();
ConverterFactory converterFactory = new ConverterFactory(options);
SparkMLEncoder encoder = new SparkMLEncoder(schema, converterFactory);
Map<FieldName, DerivedField> derivedFields = encoder.getDerivedFields();
List<org.dmg.pmml.Model> models = new ArrayList<>();
List<String> predictionColumns = new ArrayList<>();
List<String> probabilityColumns = new ArrayList<>();
// Transformations preceding the last model
List<FieldName> preProcessorNames = Collections.emptyList();
Iterable<Transformer> transformers = getTransformers(pipelineModel);
for(Transformer transformer : transformers){
TransformerConverter<?> converter = converterFactory.newConverter(transformer);
if(converter instanceof FeatureConverter){
FeatureConverter<?> featureConverter = (FeatureConverter<?>)converter;
featureConverter.registerFeatures(encoder);
} else
if(converter instanceof ModelConverter){
ModelConverter<?> modelConverter = (ModelConverter<?>)converter;
org.dmg.pmml.Model model = modelConverter.registerModel(encoder);
models.add(model);
hasPredictionCol:
if(transformer instanceof HasPredictionCol){
HasPredictionCol hasPredictionCol = (HasPredictionCol)transformer;
// XXX
if((transformer instanceof GeneralizedLinearRegressionModel) && (MiningFunction.CLASSIFICATION).equals(model.getMiningFunction())){
break hasPredictionCol;
}
predictionColumns.add(hasPredictionCol.getPredictionCol());
} // End if
if(transformer instanceof HasProbabilityCol){
HasProbabilityCol hasProbabilityCol = (HasProbabilityCol)transformer;
probabilityColumns.add(hasProbabilityCol.getProbabilityCol());
}
preProcessorNames = new ArrayList<>(derivedFields.keySet());
} else
{
throw new IllegalArgumentException("Expected a subclass of " + FeatureConverter.class.getName() + " or " + ModelConverter.class.getName() + ", got " + (converter != null ? ("class " + (converter.getClass()).getName()) : null));
}
}
// Transformations following the last model
List<FieldName> postProcessorNames = new ArrayList<>(derivedFields.keySet());
postProcessorNames.removeAll(preProcessorNames);
org.dmg.pmml.Model model;
if(models.size() == 1){
model = Iterables.getOnlyElement(models);
} else
if(models.size() > 1){
model = MiningModelUtil.createModelChain(models);
} else
{
throw new IllegalArgumentException("Expected a pipeline with one or more models, got a pipeline with zero models");
} // End if
if(postProcessorNames.size() > 0){
org.dmg.pmml.Model finalModel = MiningModelUtil.getFinalModel(model);
Output output = ModelUtil.ensureOutput(finalModel);
for(FieldName postProcessorName : postProcessorNames){
DerivedField derivedField = derivedFields.get(postProcessorName);
encoder.removeDerivedField(postProcessorName);
OutputField outputField = new OutputField(derivedField.getName(), derivedField.getOpType(), derivedField.getDataType())
.setResultFeature(ResultFeature.TRANSFORMED_VALUE)
.setExpression(derivedField.getExpression());
output.addOutputFields(outputField);
}
}
PMML pmml = encoder.encodePMML(model);
if((predictionColumns.size() > 0 || probabilityColumns.size() > 0) && (verification != null)){
Dataset<Row> dataset = verification.getDataset();
Dataset<Row> transformedDataset = verification.getTransformedDataset();
Double precision = verification.getPrecision();
Double zeroThreshold = verification.getZeroThreshold();
List<String> inputColumns = new ArrayList<>();
MiningSchema miningSchema = model.getMiningSchema();
List<MiningField> miningFields = miningSchema.getMiningFields();
for(MiningField miningField : miningFields){
MiningField.UsageType usageType = miningField.getUsageType();
switch(usageType){
case ACTIVE:
FieldName name = miningField.getName();
inputColumns.add(name.getValue());
break;
default:
break;
}
}
Map<VerificationField, List<?>> data = new LinkedHashMap<>();
for(String inputColumn : inputColumns){
VerificationField verificationField = ModelUtil.createVerificationField(FieldName.create(inputColumn));
data.put(verificationField, getColumn(dataset, inputColumn));
}
for(String predictionColumn : predictionColumns){
Feature feature = encoder.getOnlyFeature(predictionColumn);
VerificationField verificationField = ModelUtil.createVerificationField(feature.getName())
.setPrecision(precision)
.setZeroThreshold(zeroThreshold);
data.put(verificationField, getColumn(transformedDataset, predictionColumn));
}
for(String probabilityColumn : probabilityColumns){
List<Feature> features = encoder.getFeatures(probabilityColumn);
for(int i = 0; i < features.size(); i++){
Feature feature = features.get(i);
VerificationField verificationField = ModelUtil.createVerificationField(feature.getName())
.setPrecision(precision)
.setZeroThreshold(zeroThreshold);
data.put(verificationField, getVectorColumn(transformedDataset, probabilityColumn, i));
}
}
model.setModelVerification(ModelUtil.createModelVerification(data));
}
return pmml;
}
public byte[] buildByteArray(){
return buildByteArray(1024 * 1024);
}
private byte[] buildByteArray(int size){
PMML pmml = build();
ByteArrayOutputStream os = new ByteArrayOutputStream(size);
try {
MetroJAXBUtil.marshalPMML(pmml, os);
} catch(JAXBException je){
throw new RuntimeException(je);
}
return os.toByteArray();
}
public File buildFile(File file) throws IOException {
PMML pmml = build();
OutputStream os = new FileOutputStream(file);
try {
MetroJAXBUtil.marshalPMML(pmml, os);
} catch(JAXBException je){
throw new RuntimeException(je);
} finally {
os.close();
}
return file;
}
public PMMLBuilder putOption(String key, Object value){
return putOptions(Collections.singletonMap(key, value));
}
public PMMLBuilder putOptions(Map<String, ?> map){
return putOptions(Pattern.compile(".*"), map);
}
public PMMLBuilder putOption(PipelineStage pipelineStage, String key, Object value){
return putOptions(pipelineStage, Collections.singletonMap(key, value));
}
public PMMLBuilder putOptions(PipelineStage pipelineStage, Map<String, ?> map){
return putOptions(Pattern.compile(pipelineStage.uid(), Pattern.LITERAL), map);
}
public PMMLBuilder putOptions(Pattern pattern, Map<String, ?> map){
Map<RegexKey, Map<String, Object>> options = getOptions();
RegexKey key = new RegexKey(pattern);
Map<String, Object> patternOptions = options.get(key);
if(patternOptions == null){
patternOptions = new LinkedHashMap<>();
options.put(key, patternOptions);
}
patternOptions.putAll(map);
return this;
}
public PMMLBuilder verify(Dataset<Row> dataset){
return verify(dataset, 1e-14, 1e-14);
}
public PMMLBuilder verify(Dataset<Row> dataset, double precision, double zeroThreshold){
PipelineModel pipelineModel = getPipelineModel();
Dataset<Row> transformedDataset = pipelineModel.transform(dataset);
Verification verification = new Verification(dataset, transformedDataset)
.setPrecision(precision)
.setZeroThreshold(zeroThreshold);
return setVerification(verification);
}
public StructType getSchema(){
return this.schema;
}
public PMMLBuilder setSchema(StructType schema){
if(schema == null){
throw new IllegalArgumentException();
}
this.schema = schema;
return this;
}
public PipelineModel getPipelineModel(){
return this.pipelineModel;
}
public PMMLBuilder setPipelineModel(PipelineModel pipelineModel){
if(pipelineModel == null){
throw new IllegalArgumentException();
}
this.pipelineModel = pipelineModel;
return this;
}
public Map<RegexKey, Map<String, Object>> getOptions(){
return this.options;
}
private PMMLBuilder setOptions(Map<RegexKey, Map<String, Object>> options){
if(options == null){
throw new IllegalArgumentException();
}
this.options = options;
return this;
}
public Verification getVerification(){
return this.verification;
}
private PMMLBuilder setVerification(Verification verification){
this.verification = verification;
return this;
}
static
private Iterable<Transformer> getTransformers(PipelineModel pipelineModel){
List<Transformer> result = new ArrayList<>();
result.add(pipelineModel);
Function<Transformer, List<Transformer>> function = new Function<Transformer, List<Transformer>>(){
@Override
public List<Transformer> apply(Transformer transformer){
if(transformer instanceof PipelineModel){
PipelineModel pipelineModel = (PipelineModel)transformer;
return Arrays.asList(pipelineModel.stages());
} else
if(transformer instanceof CrossValidatorModel){
CrossValidatorModel crossValidatorModel = (CrossValidatorModel)transformer;
return Collections.singletonList(crossValidatorModel.bestModel());
} else
if(transformer instanceof TrainValidationSplitModel){
TrainValidationSplitModel trainValidationSplitModel = (TrainValidationSplitModel)transformer;
return Collections.singletonList(trainValidationSplitModel.bestModel());
}
return null;
}
};
while(true){
boolean modified = false;
ListIterator<Transformer> transformerIt = result.listIterator();
while(transformerIt.hasNext()){
Transformer transformer = transformerIt.next();
List<Transformer> childTransformers = function.apply(transformer);
if(childTransformers != null){
transformerIt.remove();
for(Transformer childTransformer : childTransformers){
transformerIt.add(childTransformer);
}
modified = true;
}
}
if(!modified){
break;
}
}
return result;
}
static
private List<?> getColumn(Dataset<Row> dataset, String name){
List<Row> rows = dataset.select(name)
.collectAsList();
return rows.stream()
.map(row -> row.apply(0))
.collect(Collectors.toList());
}
static
private List<?> getVectorColumn(Dataset<Row> dataset, String name, int index){
List<Vector> column = (List<Vector>)getColumn(dataset, name);
return column.stream()
.map(vector -> vector.apply(index))
.collect(Collectors.toList());
}
static
private void init(){
ConverterFactory.checkVersion();
ConverterFactory.checkApplicationClasspath();
ConverterFactory.checkNoShading();
}
static
public class Verification {
private Dataset<Row> dataset = null;
private Dataset<Row> transformedDataset = null;
public Double precision = null;
public Double zeroThreshold = null;
private Verification(Dataset<Row> dataset, Dataset<Row> transformedDataset){
setDataset(dataset);
setTransformedDataset(transformedDataset);
}
public Dataset<Row> getDataset(){
return this.dataset;
}
private Verification setDataset(Dataset<Row> dataset){
this.dataset = dataset;
return this;
}
public Dataset<Row> getTransformedDataset(){
return this.transformedDataset;
}
private Verification setTransformedDataset(Dataset<Row> transformedDataset){
this.transformedDataset = transformedDataset;
return this;
}
public Double getPrecision(){
return this.precision;
}
public Verification setPrecision(Double precision){
this.precision = precision;
return this;
}
public Double getZeroThreshold(){
return this.zeroThreshold;
}
public Verification setZeroThreshold(Double zeroThreshold){
this.zeroThreshold = zeroThreshold;
return this;
}
}
static {
init();
}
}