-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
executable file
·160 lines (130 loc) · 4.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
Copyright (c) 2022, salesforce.com, inc. with modifications by Gueter Josmy Faure
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import os
import random
import lavis.tasks as tasks
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from lavis.common.config import Config
from lavis.common.dist_utils import get_rank, init_distributed_mode
from lavis.common.logger import setup_logger
from lavis.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from lavis.common.registry import registry
from lavis.common.utils import now
# imports modules for registration
from lavis.datasets.builders import *
from lavis.models import *
from lavis.processors import *
from lavis.runners import *
from lavis.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
return runner_cls
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
# job_id = now()
cfg = Config(parse_args())
dataset_name = list(cfg.datasets_cfg.keys())[0]
cfg.datasets_cfg[dataset_name]["num_frames"] = cfg.model_cfg.num_frames
job_id = "{}/{}_{}/".format(
dataset_name, cfg.model_cfg.arch, cfg.model_cfg.model_type
)
if cfg.run_cfg.prefix:
job_id += f"{cfg.run_cfg.prefix}/"
if "lvu" in dataset_name:
job_id += "{}/b{}_e{}_lr{}_wd{}_q{}_h{}_f{}_fb{}_fg{}_wz{}".format(
cfg.datasets_cfg[dataset_name]["task"],
cfg.run_cfg.batch_size_train * cfg.run_cfg.accum_grad_iters,
cfg.run_cfg.max_epoch,
cfg.run_cfg.init_lr,
cfg.run_cfg.weight_decay,
cfg.model_cfg.num_query_token,
cfg.datasets_cfg[dataset_name]["history"],
cfg.datasets_cfg[dataset_name]["num_frames"],
cfg.model_cfg.memory_bank_length,
cfg.model_cfg.num_frames_global,
cfg.model_cfg.window_size,
)
elif "coin" in dataset_name or "breakfast" in dataset_name:
job_id += "b{}_e{}_lr{}_wd{}_q{}_f{}_fb{}_fg{}_wz{}".format(
cfg.run_cfg.batch_size_train * cfg.run_cfg.accum_grad_iters,
cfg.run_cfg.max_epoch,
cfg.run_cfg.init_lr,
cfg.run_cfg.weight_decay,
cfg.model_cfg.num_query_token,
cfg.datasets_cfg[dataset_name]["num_frames"],
cfg.model_cfg.memory_bank_length,
cfg.model_cfg.num_frames_global,
cfg.model_cfg.window_size,
)
elif (
"msvd" in dataset_name
or "msrvtt" in dataset_name
or "activitynet" in dataset_name
or "youcook"
or "moviechat" in dataset_name
):
job_id += "b{}_e{}_lr{}_wd{}_q{}_f{}_fb{}_fg{}_wz{}".format(
cfg.run_cfg.batch_size_train * cfg.run_cfg.accum_grad_iters,
cfg.run_cfg.max_epoch,
cfg.run_cfg.init_lr,
cfg.run_cfg.weight_decay,
cfg.model_cfg.num_query_token,
cfg.datasets_cfg[dataset_name]["num_frames"],
cfg.model_cfg.memory_bank_length,
cfg.model_cfg.num_frames_global,
cfg.model_cfg.window_size,
)
cfg.model_cfg.arch += "_hermes"
if cfg.model_cfg.freeze_vit:
job_id += "_freezevit"
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
cfg.run_cfg.log_dir = os.path.join("lavis", cfg.run_cfg.output_dir, job_id)
setup_logger(output_dir=os.path.join("lavis", cfg.run_cfg.output_dir, job_id))
cfg.pretty_print()
task = tasks.setup_task(cfg)
datasets = task.build_datasets(cfg)
model = task.build_model(cfg)
runner = get_runner_class(cfg)(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
)
runner.train()
if __name__ == "__main__":
main()