diff --git a/lmo/_poly.py b/lmo/_poly.py index d0f51a3f..0d59784f 100644 --- a/lmo/_poly.py +++ b/lmo/_poly.py @@ -9,15 +9,15 @@ __all__ = ( 'eval_sh_jacobi', + 'peaks_jacobi', + 'arg_extrema_jacobi', + 'extrema_jacobi', 'jacobi', 'jacobi_series', 'roots', - 'extrema', - 'minima', - 'maxima', ) -from typing import Any, TypeVar, cast, overload +from typing import TypeVar, cast, overload import numpy as np import numpy.polynomial as npp @@ -101,6 +101,190 @@ def eval_sh_jacobi( return scs.eval_jacobi(n, a, b, u) # type: ignore +def peaks_jacobi(n: int, a: float, b: float) -> npt.NDArray[np.float64]: + r""" + Finds the \( x \in [-1, 1] \) s.t. + \( /frac{\dd{\shjacobi{n}{a}{b}{x}}}{\dd{x}} = 0 \) of a Jacobi polynomial, + which includes the endpoints \( x \in \{-1, 1\} \). I.e. the locations of + the peaks. + + The Jacobi polynomials with order \( n \) have \( n + 1 \) peaks. + + Examples: + For \( n = 0 \) there is only one "peak", since + \( \jacobi{0}{a}{b}{x} = 1 \): + + >>> peaks_jacobi(0, 0, 0) + array([0.]) + + The `0` is arbitrary; all \( x \in [0, 1] \) evaluate to the same + constant \( 1 \). + + For \( n = 1 \), it is a positive linear function, so the peaks + are exactly the endpoints, and do not depend on \( a \) or \( b \): + + >>> peaks_jacobi(1, 0, 0) + array([-1., 1.]) + >>> peaks_jacobi(1, 3.14, -1 / 12) + array([-1., 1.]) + + For \( n > 1 \), the effects of the choices for \( a \) and \( b \) + become apparent, e.g. for \( n = 4 \): + + >>> peaks_jacobi(4, 0, 0).round(5) + array([-1. , -0.65465, 0. , 0.65465, 1. ]) + >>> peaks_jacobi(4, 0, 1).round(5) + array([-1. , -0.50779, 0.1323 , 0.70882, 1. ]) + >>> peaks_jacobi(4, 1, 0).round(5) + array([-1. , -0.70882, -0.1323 , 0.50779, 1. ]) + >>> peaks_jacobi(4, 1, 1).round(5) + array([-1. , -0.57735, 0. , 0.57735, 1. ]) + >>> peaks_jacobi(4, 2.5, 2.5) + array([-1. , -0.5, 0. , 0.5, 1. ]) + >>> peaks_jacobi(4, 10, 10).round(5) + array([-1. , -0.33333, 0. , 0.33333, 1. ]) + """ + if n == 0: + # constant; any x is a "peak"; so take the "middle ground" + return np.array([0.]) + if n == 1: + # linear; the peaks are only at the ends + return np.array([-1., 1.]) + + # otherwise, peaks are at the ends, and at the roots of the derivative + x = np.empty(n + 1) + x[0] = -1 + x[1:-1] = scs.roots_jacobi(n - 1, a + 1, b + 1)[0] # type: ignore + x[-1] = 1 + + return np.round(x, 15) + 0.0 # cleanup of numerical noise + +def arg_extrema_jacobi(n: int, a: float, b: float) -> tuple[float, float]: + r""" + Find the \( x \) of the minimum and maximum values of a Jacobi polynomial + on \( [-1, 1] \). + + Note: + There can be multiple \( x \) that share the same extremum, but only + one of them is returned, which for \( n > 0 \) is the smallest (first) + one. + + Examples: + For \( n = 1 \), the Jacobi polynomials are positive linear function + (i.e. a straight line), so the minimum and maximum are the left and + right endpoints of the domain. + + >>> arg_extrema_jacobi(1, 0, 0) + (-1.0, 1.0) + >>> arg_extrema_jacobi(1, 3.14, -1 / 12) + (-1.0, 1.0) + + The 2nd degree Jacobi polynomial is a positive parabola, with one + unique minimum, and maxima at \( -1 \) and/or \( 1 \). + When \( a == b \), the parabola is centered within the domain, and + has maxima at both \( x = -1 \) and \( x=1 \). For the sake of + simplicity, only one (the first) value is returned in such cases: + + >>> arg_extrema_jacobi(2, 0, 0) + (0.0, -1.0) + >>> arg_extrema_jacobi(2, 42, 42) + (0.0, -1.0) + + Conversely, when \( a \neq b \), the parabola is "shifted" so that + there is only one global maximum: + + >>> arg_extrema_jacobi(2, 0, 1) + (0.2, -1.0) + >>> arg_extrema_jacobi(2, 1, 0) + (-0.2, 1.0) + >>> arg_extrema_jacobi(2, 10, 2) + (-0.5, 1.0) + + """ + x = peaks_jacobi(n, a, b) + p = eval_sh_jacobi(n, a, b, (x + 1) / 2) + + return x[np.argmin(p)], x[np.argmax(p)] + +def extrema_jacobi(n: int, a: float, b: float) -> tuple[float, float]: + r""" + Find the global minimum and maximum values of a (shifted) Jacobi + polynomial on \( [-1, 1] \) (or equivalently \( [0, 1] \) if shifted). + + Examples: + With \( n \), \( \jacobi{0}{a}{b}{x} = 1 \), so there is only one + "extremum": + + >>> extrema_jacobi(0, 0, 0) + (1, 1) + >>> extrema_jacobi(0, 3.14, -1 / 12) + (1, 1) + + With \( n = 1 \), the extrema are always at \( -1 \) and \( 1 \), + but their values depend on \( a \) and \( b \): + + >>> extrema_jacobi(1, 0, 0) + (-1.0, 1.0) + >>> extrema_jacobi(1, 0, 1) + (-2.0, 1.0) + >>> extrema_jacobi(1, 1, 0) + (-1.0, 2.0) + >>> extrema_jacobi(1, 1, 1) + (-2.0, 2.0) + + For \( n = 2 \) (a parabola), the relation between \( a, b \) + and the extrema isn't as obvious: + + >>> extrema_jacobi(2, 0, 0) + (-0.5, 1.0) + >>> extrema_jacobi(2, 0, 4) + (-0.75, 15.0) + >>> extrema_jacobi(2, 4, 0) + (-0.75, 15.0) + >>> extrema_jacobi(2, 4, 4) + (-1.5, 15.0) + + With \( n = 3 \), the extrema appear to behave very predictable: + + >>> extrema_jacobi(3, 0, 0) + (-1.0, 1.0) + >>> extrema_jacobi(3, 0, 1) + (-4.0, 1.0) + >>> extrema_jacobi(3, 1, 0) + (-1.0, 4.0) + >>> extrema_jacobi(3, 1, 1) + (-4.0, 4.0) + + However, if we keep \( a \) fixed at \( 0 \), and increase \( b \), + the plot-twist emerges: + + >>> extrema_jacobi(3, 0, 2) + (-10.0, 1.0) + >>> extrema_jacobi(3, 0, 3) + (-20.0, 1.0) + >>> extrema_jacobi(3, 0, 4) + (-35.0, 1.13541...) + >>> extrema_jacobi(3, 0, 5) + (-56.0, 1.25241...) + + Looking at the corresponding \( x \) can help to understand the + "movement" of the maximum. + + >>> arg_extrema_jacobi(3, 0, 2) + (-1.0, 1.0) + >>> arg_extrema_jacobi(3, 0, 3) + (-1.0, 0.0) + >>> arg_extrema_jacobi(3, 0, 4) + (-1.0, 0.09449...) + >>> arg_extrema_jacobi(3, 0, 5) + (-1.0, 0.17287...) + + """ + x = peaks_jacobi(n, a, b) + p = eval_sh_jacobi(n, a, b, (x + 1) / 2) + return cast(float, np.min(p)), cast(float, np.max(p)) + + def _jacobi_coefs(n: int, a: float, b: float) -> npt.NDArray[np.float64]: p_n: np.poly1d p_n = scs.jacobi(n, a, b) # type: ignore [reportUnknownMemberType] @@ -182,41 +366,3 @@ def roots( return x[(x >= a) & (x <= b)] return x - - -def integrate(p: PolySeries, /, a: float | None = None) -> PolySeries: - r"""Calculate the anti-derivative: $P(x) = \int_a^x p(u) \, du$.""" - return p.integ(lbnd=p.domain[0] if a is None else a) - - -def extrema( - p: PolySeries, - /, - outside: bool = False, -) -> npt.NDArray[np.inexact[Any]]: - """Return the $x$ in the domain of $p$, where $p'(x) = 0$.""" - return roots(p.deriv(), outside=outside) - - -def minima( - p: PolySeries, - /, - outside: bool = False, -) -> npt.NDArray[np.inexact[Any]]: - """ - Return the $x$ in the domain of $p$, where $p'(x) = 0$ and $p''(x) > 0$. - """ # noqa: D200 - x = extrema(p, outside=outside) - return x[p.deriv(2)(x) > 0] if len(x) else x - - -def maxima( - p: PolySeries, - /, - outside: bool = False, -) -> npt.NDArray[np.inexact[Any]]: - """ - Return the $x$ in the domain of $p$, where $p'(x) = 0$ and $p''(x) < 0$. - """ # noqa: D200 - x = extrema(p, outside=outside) - return x[p.deriv(2)(x) < 0] if len(x) else x diff --git a/lmo/diagnostic.py b/lmo/diagnostic.py index b260786b..f43e6ce1 100644 --- a/lmo/diagnostic.py +++ b/lmo/diagnostic.py @@ -42,7 +42,9 @@ ) from ._lm import l_ratio +from ._poly import extrema_jacobi from ._utils import clean_orders, clean_trim +from .special import fpow from .typing import AnyInt, AnyTrim, IntVector if TYPE_CHECKING: @@ -52,6 +54,8 @@ AnyRV: TypeAlias = rv_continuous | rv_discrete +_ArrF8: TypeAlias = npt.NDArray[np.float64] + class HypothesisTestResult(NamedTuple): r""" @@ -66,8 +70,8 @@ class HypothesisTestResult(NamedTuple): hypothesis, $H_0$. """ - statistic: float | npt.NDArray[np.float64] - pvalue: float | npt.NDArray[np.float64] + statistic: float | _ArrF8 + pvalue: float | _ArrF8 @property def is_valid(self) -> bool | npt.NDArray[np.bool_]: @@ -165,22 +169,14 @@ def normaltest( return HypothesisTestResult(k2, p_value) -def _gof_stat_single( - l_obs: npt.NDArray[np.float64], - l_exp: npt.NDArray[np.float64], - cov: npt.NDArray[np.float64], -) -> float: +def _gof_stat_single(l_obs: _ArrF8, l_exp: _ArrF8, cov: _ArrF8) -> float: err = l_obs - l_exp prec = np.linalg.inv(cov) # precision matrix return cast(float, err.T @ prec @ err) _gof_stat = cast( - Callable[[ - npt.NDArray[np.float64], - npt.NDArray[np.float64], - npt.NDArray[np.float64], - ], npt.NDArray[np.float64]], + Callable[[_ArrF8, _ArrF8, _ArrF8], _ArrF8], np.vectorize( _gof_stat_single, otypes=[float], @@ -192,7 +188,7 @@ def _gof_stat_single( def l_moment_gof( rv_or_cdf: AnyRV | Callable[[float], float], - l_moments: npt.NDArray[np.float64], + l_moments: _ArrF8, n_obs: int, /, trim: AnyTrim = (0, 0), @@ -282,13 +278,13 @@ def l_moment_gof( lambda_rr = l_moment_cov_from_cdf(cdf, n, trim, **kwargs) stat = n_obs * _gof_stat(l_r.T, lambda_r, lambda_rr).T[()] - pval = cast(float | npt.NDArray[np.float64], chdtrc(n, stat)) + pval = cast(float | _ArrF8, chdtrc(n, stat)) return HypothesisTestResult(stat, pval) def l_stats_gof( rv_or_cdf: AnyRV | Callable[[float], float], - l_stats: npt.NDArray[np.float64], + l_stats: _ArrF8, n_obs: int, /, trim: AnyTrim = (0, 0), @@ -316,7 +312,7 @@ def l_stats_gof( tau_rr = l_stats_cov_from_cdf(cdf, n, trim, **kwargs) stat = n_obs * _gof_stat(t_r.T, tau_r, tau_rr).T[()] - pval = cast(float | npt.NDArray[np.float64], chdtrc(n, stat)) + pval = cast(float | _ArrF8, chdtrc(n, stat)) return HypothesisTestResult(stat, pval) @@ -348,7 +344,7 @@ def _lm2_bounds_single(r: int, trim: tuple[float, float]) -> float: ) / (np.pi * 2 * r**2) _lm2_bounds = cast( - Callable[[IntVector, tuple[float, float]], npt.NDArray[np.float64]], + Callable[[IntVector, tuple[float, float]], _ArrF8], np.vectorize( _lm2_bounds_single, otypes=[float], @@ -357,33 +353,32 @@ def _lm2_bounds_single(r: int, trim: tuple[float, float]) -> float: ), ) - @overload def l_moment_bounds( - r: IntVector, + r: AnyInt, /, trim: AnyTrim = ..., scale: float = ..., -) -> npt.NDArray[np.float64]: +) -> float: ... @overload def l_moment_bounds( - r: AnyInt, + r: IntVector, /, trim: AnyTrim = ..., scale: float = ..., -) -> float: +) -> _ArrF8: ... def l_moment_bounds( - r: IntVector | AnyInt, + r: AnyInt | IntVector, /, trim: AnyTrim = (0, 0), scale: float = 1.0, -) -> float | npt.NDArray[np.float64]: +) -> float | _ArrF8: r""" Returns the absolute upper bounds $L^{(s,t)}_r$ on L-moments $\lambda^{(s,t)}_r$, proportional to the scale $\sigma_X$ (standard @@ -480,109 +475,177 @@ def l_moment_bounds( _trim = clean_trim(trim) return scale * np.sqrt(_lm2_bounds(_r, _trim))[()] - @overload def l_ratio_bounds( - r: IntVector, + r: AnyInt, /, trim: AnyTrim = ..., *, - has_variance: bool = ..., -) -> npt.NDArray[np.float64]: - ... - + legacy: bool = ..., +) -> tuple[float, float]: ... @overload def l_ratio_bounds( - r: AnyInt, + r: IntVector, /, trim: AnyTrim = ..., *, - has_variance: bool = ..., -) -> float: - ... - + legacy: bool = ..., +) -> tuple[_ArrF8, _ArrF8]: ... def l_ratio_bounds( r: IntVector | AnyInt, /, trim: AnyTrim = (0, 0), *, - has_variance: bool = True, -) -> float | npt.NDArray[np.float64]: + legacy: bool = False, +) -> tuple[float | _ArrF8, float | _ArrF8]: r""" - Returns the absolute upper bounds $T^{(s,t)}_r$ on L-moment ratio's - $\tau^{(s,t)}_r = \lambda^{(s,t)}_r / \lambda^{(s,t)}_r$, for $r \ge 2$. - So $\left| \tau^{(s,t)}_r(X) \right| \le T^{(s,t)}_r$, given that - $\mathrm{Var}[X] = \sigma^2_X$ exists. - - If the variance of the distribution is not defined, e.g. in case of the - [Cauchy distribution](https://wikipedia.org/wiki/Cauchy_distribution), - this method will not work. In this case, the looser bounds from - Hosking (2007) can be used instead, by passing `has_variance=False`. + Unlike the standardized product-moments, the L-moment ratio's with + \( r \ge 2 \) are bounded above and below. + + Specifically, Hosking derived in 2007 that + + \[ + | \tlratio{r}{s,t}| \le + \frac 2 r + \frac{\ffact{r + s + t}{r - 2}}{\ffact{r - 1 + s \wedge t}{r - 2}} + . + \] + + But this derivation relies on unnecessarily loose Jacobi polynomial bounds. + If the actual min and max of the Jacobi polynomials are used instead, + the following (tighter) inequality is obtained: + + \[ + \frac{\dot{w}_r^{(s, t)}}{\dot{w}_2^{(s, t)}} + \min_{u \in [0, 1]} \left[ \shjacobi{r - 1}{t + 1}{s + 1}{u} \right] + \le + \tlratio{s, t}{r} + \le + \frac{\dot{w}_r^{(s, t)}}{\dot{w}_2^{(s, t)}} + \max_{0 \le u \le 1} \left[ \shjacobi{r - 1}{t + 1}{s + 1}{u} \right], + \] + + where + + \[ + \dot{w}_r^{(s, t)} = + % \frac{r + s + t}{r (r - 1)} + % \frac{\B(r,\ r + s + t)}{\B(r + s,\ r + t)}. + \frac{\B(r - 1,\ r + s + t + 1)}{r \B(r + s,\ r + t)}. + \] Examples: - Calculate the bounds for different degrees of trimming: + Without trim, the lower- and upper-bounds of the L-skewness and + L-kurtosis are: + + >>> l_ratio_bounds(3) + (-1.0, 1.0) + >>> l_ratio_bounds(4) + (-0.25, 1.0) + + For the L-kurtosis, the "legacy" bounds by Hosking (2007) are clearly + looser: + + >>> l_ratio_bounds(4, legacy=True) + (-1.0, 1.0) + + For the symmetrically trimmed TL-moment ratio's: + + >>> l_ratio_bounds(3, trim=3) + (-1.2, 1.2) + >>> l_ratio_bounds(4, trim=3) + (-0.15, 1.5) - >>> l_ratio_bounds([1, 2, 3, 4]) - array([ inf, 1. , 0.77459667, 0.65465367]) - >>> # the bounds for r=1,2 are the same for all trimmings; skip them - >>> l_ratio_bounds([3, 4], trim=(1, 1)) - array([0.61475926, 0.4546206 ]) - >>> l_ratio_bounds([3, 4], trim=(.5, 1.5)) - array([0.65060005, 0.49736473]) + Similarly, those of the LL-ratio's are - In case of undefined variance, the bounds become a lot looser: + >>> l_ratio_bounds(3, trim=(0, 3)) + (-0.8, 2.0) + >>> l_ratio_bounds(4, trim=(0, 3)) + (-0.2333..., 3.5) + + The LH-skewness bounds are "flipped" w.r.t to the LL-skewness, + but they are the same for the L*-kurtosis: + + >>> l_ratio_bounds(3, trim=(3, 0)) + (-2.0, 0.8) + >>> l_ratio_bounds(4, trim=(3, 0)) + (-0.2333..., 3.5) + + The bounds of multiple L-ratio's can be calculated in one shot: + >>> l_ratio_bounds([3, 4, 5, 6], trim=(1, 2)) + (array([-1. , -0.194..., -1.12 , -0.149...]), + array([1.333..., 1.75 , 2.24 , 2.8 ])) - >>> l_ratio_bounds([3, 4], has_variance=False) - array([1., 1.]) - >>> l_ratio_bounds([3, 4], trim=(1, 1), has_variance=False) - array([1.11111111, 1.25 ]) - >>> l_ratio_bounds([3, 4], trim=(.5, 1.5), has_variance=False) - array([1.33333333, 1.71428571]) Args: - r: Order of the L-moment ratio(s), as positive integer scalar or - array-like. - trim: Tuple of left- and right- trim-lengths, matching those of the - relevant L-moment ratio's. - has_variance: - Set to False if the distribution has undefined variance, in which - case the (looser) bounds from J.R.M. Hosking (2007) will be used. + r: Scalar or array-like with the L-moment ratio order(s). + trim: L-moment ratio trim-length(s). + legacy: If set to `True`, will use the (looser) by Hosking (2007). Returns: - Array or scalar with shape like $r$. + A 2-tuple with arrays or scalars, of the lower- and upper bounds. See Also: - [`l_ratio`][lmo.l_ratio] - [`l_ratio_se`][lmo.l_ratio_se] + - [`diagnostic.l_moment_bounds`][lmo.diagnostic.l_moment_bounds] References: - [J.R.M. Hosking (2007) - Some theory and practical uses of trimmed L-moments](https://doi.org/10.1016/j.jspi.2006.12.002) """ - if has_variance: - return l_moment_bounds(r, trim) / l_moment_bounds(2, trim) + _r = clean_orders(r) + s, t = clean_trim(trim) - # otherwise, fall back to the (very) loose bounds from Hosking - _r = clean_orders(r, rmin=1) - _n = cast(int, np.max(_r)) + 1 + t_min = np.empty(_r.shape) + t_max = np.empty(_r.shape) + + _cache: dict[int, tuple[float, float]] = {} + for i, ri in np.ndenumerate(_r): + _ri = cast(int, ri) + if _ri in _cache: + t_min[i], t_max[i] = _cache[_ri] + + if _ri == 1: + # L-loc / L-scale; unbounded + t_min[i], t_max[i] = -np.inf, np.inf + elif _ri in (0, 2): # or s == t == 0: + t_min[i] = t_max[i] = 1 + elif legacy: + t_absmax = ( + 2 + * fpow(_ri + s + t, _ri - 2) + / fpow(_ri + min(s, t) - 1, _ri - 2) + / _ri + ) + t_min[i] = -t_absmax + t_max[i] = t_absmax + else: + cr_c2 = 2 * ( + np.exp( + lgamma(_ri - 1) + - np.log(_ri) + + lgamma(s + 2) + - lgamma(_ri + s) + + lgamma(t + 2) + - lgamma(_ri + t) + + lgamma(_ri + s + t + 1) + - lgamma(s + t + 3) # noqa: COM812 + ) + ) - s, t = clean_trim(trim) + p_min, p_max = extrema_jacobi(_ri - 2, t + 1, s + 1) + assert p_min < 0 < p_max, (p_min, p_max) - out = np.ones(_n) - if _n > 1: - # `L-loc / L-scale (= 1 / CV)` is unbounded - out[1] = np.inf + t_min[i] = cr_c2 * p_min + t_max[i] = cr_c2 * p_max - if _n > 3 and s and t: - # if not trimmed, then the bounds are simply 1 - p, q = s + t, min(s, t) - for _k in range(3, _n): - out[_k] = out[_k - 1] * (1 + p / _k) / (1 + q / (_k - 1)) + _cache[_ri] = t_min[i], t_max[i] - return out[_r] + return t_min.round(12)[()], t_max.round(12)[()] def rejection_point( @@ -668,7 +731,7 @@ def rejection_point( def integrand(x: float) -> float: return max(abs(influence_fn(-x)), abs(influence_fn(x))) - def obj(r: npt.NDArray[np.float64]) -> float: + def obj(r: _ArrF8) -> float: return quad(integrand, r[0], np.inf)[0] # type: ignore res = cast( @@ -734,7 +797,7 @@ def error_sensitivity( if np.isinf(influence_fn(a)) or np.isinf(influence_fn(b)): return np.inf - def obj(xs: npt.NDArray[np.float64]) -> float: + def obj(xs: _ArrF8) -> float: return -abs(influence_fn(xs[0])) bounds = None if np.isneginf(a) and np.isposinf(b) else [(a, b)] @@ -817,7 +880,7 @@ def shift_sensitivity( """ - def obj(xs: npt.NDArray[np.float64]) -> float: + def obj(xs: _ArrF8) -> float: x, y = xs if y == x: return 0 diff --git a/lmo/distributions.py b/lmo/distributions.py index 34665332..02377e3c 100644 --- a/lmo/distributions.py +++ b/lmo/distributions.py @@ -848,7 +848,7 @@ def _check_lmoments( r = np.arange(1, n + 1) t_r = l_r[2:] / l_r[1] - t_r_max = l_ratio_bounds(r[2:], trim, has_variance=False) + t_r_max = l_ratio_bounds(r[2:], trim, legacy=True)[1] if np.any(rs0_oob := np.abs(t_r) > t_r_max): r_oob = np.argwhere(rs0_oob)[0] + 3 t_oob = t_r[rs0_oob][0] diff --git a/lmo/special.py b/lmo/special.py index be11651b..d54e3758 100644 --- a/lmo/special.py +++ b/lmo/special.py @@ -4,7 +4,6 @@ 'fpow', 'gamma2', 'harmonic', - 'eval_sh_jacobi', 'norm_sh_jacobi', 'fourier_jacobi', ) @@ -204,81 +203,6 @@ def harmonic( return _out[()] if np.isscalar(n) else _out -@overload -def eval_sh_jacobi( - n: int, - alpha: float, - beta: float, - x: AnyScalar, - out: None = ..., -) -> float: ... - -@overload -def eval_sh_jacobi( - n: int, - alpha: float, - beta: float, - x: AnyNDArray[np.generic], - out: npt.NDArray[np.float64] | None = ..., -) -> npt.NDArray[np.float64]: ... - -@overload -def eval_sh_jacobi( - n: int, - alpha: float, - beta: float, - x: npt.ArrayLike, - out: npt.NDArray[np.float64], -) -> npt.NDArray[np.float64]: ... - -@overload -def eval_sh_jacobi( - n: int, - alpha: float, - beta: float, - x: npt.ArrayLike, - out: npt.NDArray[np.float64] | None = ..., -) -> float | npt.NDArray[np.float64]: ... - -def eval_sh_jacobi( - n: int, - alpha: float, - beta: float, - x: npt.ArrayLike, - out: npt.NDArray[np.float64] | None = None, -) -> float | npt.NDArray[np.float64]: - r""" - Evaluate the (correct) shifted Jacobi Polynomial - \( \shjacobi{n}{\alpha}{\beta}{u} \) on \( x \in [0, 1] \), i.e. - the Jacobi Polynomial with mapped argument as \( x \mapsto 2x - 1 \). - - It is well known that the "shifted Legendre" polynomial is the Legendre - polynomial with \( 2x - 1 \) as mapped argument, which is correctly - implemented in - [`scipy.special.eval_sh_legendre`][scipy.special.eval_sh_legendre]. - Any textbook on orthogonal - polynomials will tell you that the generalization of Legendre are the - Jacobi polynomials. Hence, the only valid interpretation of the - "shifted Jacobi polynomials", should be the analogue (homomorphism) of - the shifted Legendre polynomials. - - However, [`scipy.special.eval_sh_jacobi`][scipy.special.eval_sh_jacobi] - are **not** the shifted Jacobi polynomials!. - Instead, the method evaluates the *generalized Gegenbauer polynomials*. - The Jacobi-, and Legendre polynomials are denoted - with a "P", which stands for "polynomial". In the `eval_sh_jacobi` - docstring, the notation \( G_n^{p,q} \) is used. Clearly, the "G" stands - for "Gegenbauer". - See [scipy/scipy#18988](https://github.com/scipy/scipy/issues/18988) for - the relevant issue. - """ - if alpha == beta == 0: - return sc.eval_sh_legendre(n, x, out) # type: ignore - - y = 2 * np.asanyarray(x) - 1 - return sc.eval_jacobi(n, alpha, beta, y, out) # type: ignore - - @overload def norm_sh_jacobi(n: int, alpha: float, beta: float) -> float: ...