-
Notifications
You must be signed in to change notification settings - Fork 0
/
tdi.py
88 lines (70 loc) · 2.2 KB
/
tdi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 9 15:28:10 2017
@author: jonny
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib import rc
rc('figure', figsize=(3.5,3))
rc('legend', fontsize='x-small')
rc('font', family='serif')
k_pe = 2e5
QE = 0.4
Q = 1.
alpha = 0.2
L_sat = 200. # W/m^2-sr-um
lambda_c = 600e-9
delta_lambda = 0.5 # um
Vs = 7e3
Ne_well = 25000
KAI_FPS = 4
KAI_H = 6400 / 4.
def mtf_tdi_smear(phi, N, S, rho):
return np.sinc(np.pi * rho * (1. / phi + S / N / phi)) * \
np.sinc(np.pi * S * rho)
def tdi_equiv_linear_smear(phi, N, S, rho):
return S + 1./phi + S / N / phi
def N_TDI(Q, Vs, GSD, Ne_FWC):
LR = Vs / GSD
return Ne_FWC * Q**2 * LR / k_pe / L_sat / delta_lambda / QE
GSD = [1., 3.]
Q = np.linspace(0.5, 1.5)
N = np.zeros((len(Q), len(GSD)))
for i, g in enumerate(GSD):
N[:,i] = N_TDI(Q, Vs, g, Ne_well)
f = plt.figure()
f.set_tight_layout(True)
plt.plot(Q, N, linewidth=1.5)
legend = ['$N_{e^-}^{FWC}=%dke^-$, %.2f m GSD' % (Ne_well*1e-3, g) for g in GSD]
for i, g in enumerate(GSD):
N[:,i] = N_TDI(Q, Vs, g, Ne_well*4)
plt.plot(Q, N, linewidth=1.5, linestyle='--')
legend += ['$N_{e^-}^{FWC}=%dke^-$, %.2f m GSD' % (Ne_well*2e-3, g) for g in GSD]
plt.legend(legend, fontsize='small')
plt.xlabel('Q')
plt.ylabel('$N_{TDI}$')
plt.ylim(1, 150)
plt.title('Optimal TDI stages for $V_s$ = %.1f km/s\n QE=%.2f, $L_{sat}=%d$ W/m$^2$-sr-um' %\
(Vs/1e3, QE, L_sat), fontsize='small')
f.savefig('figures/N_tdi.pgf')
def LR_req(GSD, OS):
return Vs * OS / GSD
GSD = np.linspace(0.5, 3.0)
OS = [1, 4, 8]
LR = np.zeros([len(GSD), len(OS)])
for i, o in enumerate(OS):
LR[:, i] = Vs / GSD * o
f = plt.figure()
f.set_tight_layout(True)
plt.plot(GSD, LR/1e3, linewidth=1.5)
#plt.hlines(KAI_FPS*KAI_H/1e3, min(GSD), max(GSD), linestyle='--', color='r', linewidth=1.5)
plt.legend(['%dx, $N_{e-}^{FWC}$ = %d ke-' % (o, o*Ne_well/1e3) for o in OS],# + ['KAI-29050 @ 4 FPS'],
fontsize='small')
plt.xlabel('GSD(m)')
plt.ylabel('Linerate (klines / sec)')
plt.title('Linerate required for equivalent well depth', fontsize='small')
f.savefig('figures/LR_req.pgf')
plt.show()