-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
361 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,355 @@ | ||
import numpy as np | ||
import torch | ||
from .base_model import BaseModel | ||
from . import networks | ||
from .patchnce import PatchNCELoss | ||
import util.util as util | ||
from .modules import loss | ||
import torch.nn.functional as F | ||
from util.util import gaussian | ||
from util.iter_calculator import IterCalculator | ||
|
||
class CUTSemanticModel(BaseModel): | ||
""" This class implements CUT and FastCUT model, described in the paper | ||
Contrastive Learning for Unpaired Image-to-Image Translation | ||
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu | ||
ECCV, 2020 | ||
The code borrows heavily from the PyTorch implementation of CycleGAN | ||
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix | ||
""" | ||
@staticmethod | ||
def modify_commandline_options(parser, is_train=True): | ||
""" Configures options specific for CUT model | ||
""" | ||
parser.add_argument('--CUT_mode', type=str, default="CUT", choices='(CUT, cut, FastCUT, fastcut)') | ||
|
||
parser.add_argument('--lambda_GAN', type=float, default=1.0, help='weight for GAN loss:GAN(G(X))') | ||
parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)') | ||
parser.add_argument('--nce_idt', type=util.str2bool, nargs='?', const=True, default=False, help='use NCE loss for identity mapping: NCE(G(Y), Y))') | ||
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers') | ||
parser.add_argument('--nce_includes_all_negatives_from_minibatch', | ||
type=util.str2bool, nargs='?', const=True, default=False, | ||
help='(used for single image translation) If True, include the negatives from the other samples of the minibatch when computing the contrastive loss. Please see models/patchnce.py for more details.') | ||
parser.add_argument('--netF', type=str, default='mlp_sample', choices=['sample', 'reshape', 'mlp_sample'], help='how to downsample the feature map') | ||
parser.add_argument('--netF_nc', type=int, default=256) | ||
parser.add_argument('--nce_T', type=float, default=0.07, help='temperature for NCE loss') | ||
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer') | ||
parser.add_argument('--flip_equivariance', | ||
type=util.str2bool, nargs='?', const=True, default=False, | ||
help="Enforce flip-equivariance as additional regularization. It's used by FastCUT, but not CUT") | ||
parser.add_argument('--use_label_B', action='store_true', help='if true domain B has labels too') | ||
parser.add_argument('--train_cls_B', action='store_true', help='if true cls will be trained not only on domain A but also on domain B') | ||
parser.add_argument('--cls_template', help='classifier/regressor model type, from torchvision (resnet18, ...), default is custom simple model', default='basic') | ||
parser.add_argument('--cls_pretrained', action='store_true', help='whether to use a pretrained model, available for non "basic" model only') | ||
parser.add_argument('--lr_f_s', type=float, default=0.0002, help='f_s learning rate') | ||
parser.add_argument('--D_noise', type=float, default=0.0, help='whether to add instance noise to discriminator inputs') | ||
parser.add_argument('--contrastive_noise', type=float, default=0.0, help='noise on constrastive classifier') | ||
parser.add_argument('--regression', action='store_true', help='if true cls will be a regressor and not a classifier') | ||
parser.add_argument('--lambda_sem', type=float, default=1.0, help='weight for semantic loss') | ||
parser.add_argument('--l1_regression', action='store_true', help='if true l1 loss will be used to compute regressor loss') | ||
|
||
parser.set_defaults(pool_size=0) # no image pooling | ||
|
||
opt, _ = parser.parse_known_args() | ||
|
||
# Set default parameters for CUT and FastCUT | ||
if opt.CUT_mode.lower() == "cut": | ||
parser.set_defaults(nce_idt=True, lambda_NCE=1.0) | ||
elif opt.CUT_mode.lower() == "fastcut": | ||
parser.set_defaults( | ||
nce_idt=False, lambda_NCE=10.0, flip_equivariance=True, | ||
n_epochs=150, n_epochs_decay=50 | ||
) | ||
else: | ||
raise ValueError(opt.CUT_mode) | ||
|
||
return parser | ||
|
||
def __init__(self, opt): | ||
BaseModel.__init__(self, opt) | ||
|
||
# specify the training losses you want to print out. | ||
# The training/test scripts will call <BaseModel.get_current_losses> | ||
|
||
if self.opt.iter_size == 1: | ||
losses_G = ['G_GAN', 'NCE', 'G','sem'] | ||
|
||
if opt.nce_idt and self.isTrain: | ||
losses_G += ['NCE_Y'] | ||
|
||
losses_CLS = ['CLS'] | ||
|
||
losses_D = ['D_real', 'D_fake'] | ||
|
||
else: | ||
losses_G = ['G_GAN_avg', 'NCE_avg', 'G_avg','sem_avg'] | ||
|
||
if opt.nce_idt and self.isTrain: | ||
losses_G += ['NCE_Y_avg'] | ||
|
||
losses_CLS = ['CLS_avg'] | ||
|
||
losses_D = ['D_real_avg', 'D_fake_avg'] | ||
|
||
self.loss_names_G = losses_G | ||
self.loss_names_CLS = losses_CLS | ||
self.loss_names_D = losses_D | ||
|
||
self.loss_names = self.loss_names_G + self.loss_names_CLS + self.loss_names_D | ||
|
||
self.visual_names = ['real_A', 'fake_B', 'real_B'] | ||
self.nce_layers = [int(i) for i in self.opt.nce_layers.split(',')] | ||
|
||
if opt.nce_idt and self.isTrain: | ||
self.visual_names += ['idt_B'] | ||
|
||
if self.isTrain: | ||
self.model_names = ['G', 'F', 'D','CLS'] | ||
else: # during test time, only load G | ||
self.model_names = ['G'] | ||
|
||
# define networks (both generator and discriminator) | ||
self.netG =networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, | ||
not opt.no_dropout, opt.G_spectral, opt.init_type, opt.init_gain, self.gpu_ids) | ||
self.netF = networks.define_F(opt.input_nc, opt.netF, opt.normG, not opt.no_dropout, opt.init_type, opt.init_gain, opt.no_antialias, self.gpu_ids, opt) | ||
if self.isTrain: | ||
self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD, | ||
opt.n_layers_D, opt.norm, opt.D_dropout, opt.D_spectral, opt.init_type, opt.init_gain, self.gpu_ids) | ||
self.netCLS = networks.define_C(opt.output_nc, opt.ndf,opt.crop_size, | ||
init_type=opt.init_type, init_gain=opt.init_gain, | ||
gpu_ids=self.gpu_ids, nclasses=opt.semantic_nclasses) | ||
|
||
# define loss functions | ||
self.criterionGAN = loss.GANLoss(opt.gan_mode).to(self.device) | ||
self.criterionNCE = [] | ||
self.criterionCLS = torch.nn.modules.CrossEntropyLoss() | ||
|
||
for nce_layer in self.nce_layers: | ||
self.criterionNCE.append(PatchNCELoss(opt).to(self.device)) | ||
|
||
self.criterionIdt = torch.nn.L1Loss().to(self.device) | ||
|
||
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) | ||
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2)) | ||
self.optimizer_CLS = torch.optim.Adam(self.netCLS.parameters(), lr=opt.lr_f_s, betas=(opt.beta1, 0.999)) | ||
|
||
if opt.regression: | ||
if opt.l1_regression: | ||
self.criterionCLS = torch.nn.L1Loss() | ||
else: | ||
self.criterionCLS = torch.nn.modules.MSELoss() | ||
else: | ||
self.criterionCLS = torch.nn.modules.CrossEntropyLoss() | ||
|
||
self.optimizers.append(self.optimizer_G) | ||
self.optimizers.append(self.optimizer_D) | ||
|
||
if self.opt.iter_size > 1 : | ||
self.iter_calculator = IterCalculator(self.loss_names) | ||
for loss_name in self.loss_names: | ||
setattr(self, "loss_" + loss_name, 0) | ||
|
||
self.niter=0 | ||
|
||
|
||
def data_dependent_initialize(self, data): | ||
""" | ||
The feature network netF is defined in terms of the shape of the intermediate, extracted | ||
features of the encoder portion of netG. Because of this, the weights of netF are | ||
initialized at the first feedforward pass with some input images. | ||
Please also see PatchSampleF.create_mlp(), which is called at the first forward() call. | ||
""" | ||
self.set_input(data) | ||
bs_per_gpu = self.real_A.size(0) // max(len(self.opt.gpu_ids), 1) | ||
self.real_A = self.real_A[:bs_per_gpu] | ||
self.real_B = self.real_B[:bs_per_gpu] | ||
self.input_A_label=self.input_A_label[:bs_per_gpu] | ||
if hasattr(self,'input_B_label'): | ||
self.input_B_label=self.input_B_label[:bs_per_gpu] | ||
|
||
self.forward() # compute fake images: G(A) | ||
if self.opt.isTrain: | ||
self.compute_D_loss().backward() # calculate gradients for D | ||
self.compute_CLS_loss().backward() # calculate gradients for CLS | ||
self.compute_G_loss().backward() # calculate gradients for G | ||
if self.opt.lambda_NCE > 0.0: | ||
self.optimizer_F = torch.optim.Adam(self.netF.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2)) | ||
self.optimizers.append(self.optimizer_F) | ||
|
||
def optimize_parameters(self): | ||
|
||
# update G | ||
self.set_requires_grad(self.netD, False) | ||
self.set_requires_grad(self.netG, True) | ||
self.set_requires_grad(self.netF, True) | ||
self.set_requires_grad(self.netCLS, False) | ||
|
||
# forward | ||
self.forward() | ||
|
||
self.loss_G = self.compute_G_loss() | ||
(self.loss_G/self.opt.iter_size).backward() | ||
self.compute_step(self.optimizer_G,self.loss_names_G) | ||
if self.opt.netF == 'mlp_sample' and self.niter % self.opt.iter_size == 0: | ||
self.optimizer_F.step() | ||
self.optimizer_F.zero_grad() | ||
|
||
|
||
# update D | ||
self.set_requires_grad(self.netD, True) | ||
self.set_requires_grad(self.netG, False) | ||
self.set_requires_grad(self.netF, False) | ||
self.set_requires_grad(self.netCLS, False) | ||
self.loss_D = self.compute_D_loss() | ||
(self.loss_D/self.opt.iter_size).backward() | ||
self.compute_step(self.optimizer_D,self.loss_names_D) | ||
|
||
# update CLS | ||
self.set_requires_grad(self.netD, False) | ||
self.set_requires_grad(self.netG, False) | ||
self.set_requires_grad(self.netF, False) | ||
self.set_requires_grad(self.netCLS, True) | ||
self.loss_CLS = self.compute_CLS_loss() | ||
(self.loss_CLS/self.opt.iter_size).backward() | ||
self.compute_step(self.optimizer_CLS,self.loss_names_CLS) | ||
|
||
self.niter = self.niter +1 | ||
|
||
def set_input(self, input): | ||
"""Unpack input data from the dataloader and perform necessary pre-processing steps. | ||
Parameters: | ||
input (dict): include the data itself and its metadata information. | ||
The option 'direction' can be used to swap domain A and domain B. | ||
""" | ||
AtoB = self.opt.direction == 'AtoB' | ||
self.real_A = input['A' if AtoB else 'B'].to(self.device) | ||
self.real_B = input['B' if AtoB else 'A'].to(self.device) | ||
self.image_paths = input['A_paths' if AtoB else 'B_paths'] | ||
if 'A_label' in input : | ||
if not self.opt.regression: | ||
self.input_A_label = input['A_label'].to(self.device) | ||
else: | ||
self.input_A_label = input['A_label'].to(torch.float).to(device=self.device) | ||
if self.opt.train_cls_B and 'B_label' in input: | ||
if not self.opt.regression: | ||
self.input_B_label = input['B_label'].to(self.device) | ||
else: | ||
self.input_B_label = input['B_label'].to(torch.float).to(device=self.device) | ||
|
||
|
||
|
||
def forward(self): | ||
"""Run forward pass; called by both functions <optimize_parameters> and <test>.""" | ||
self.real = torch.cat((self.real_A, self.real_B), dim=0) if self.opt.nce_idt and self.opt.isTrain else self.real_A | ||
if self.opt.flip_equivariance: | ||
self.flipped_for_equivariance = self.opt.isTrain and (np.random.random() < 0.5) | ||
if self.flipped_for_equivariance: | ||
self.real = torch.flip(self.real, [3]) | ||
|
||
self.fake = self.netG(self.real) | ||
self.fake_B = self.fake[:self.real_A.size(0)] | ||
if self.opt.nce_idt: | ||
self.idt_B = self.fake[self.real_A.size(0):] | ||
|
||
d = 1 | ||
self.pred_real_A = self.netCLS(self.real_A) | ||
if not self.opt.regression: | ||
_,self.gt_pred_A = self.pred_real_A.max(1) | ||
|
||
self.pred_fake_B = self.netCLS(self.fake_B) | ||
if not self.opt.regression: | ||
_,self.pfB = self.pred_fake_B.max(1) | ||
|
||
|
||
def compute_D_loss(self): | ||
"""Calculate GAN loss for the discriminator""" | ||
if self.opt.D_noise: | ||
fake = self.fake_B_noisy.detach() | ||
else: | ||
fake = self.fake_B.detach() | ||
# Fake; stop backprop to the generator by detaching fake_B | ||
pred_fake = self.netD(fake) | ||
self.loss_D_fake = self.criterionGAN(pred_fake, False).mean() | ||
# Real | ||
if self.opt.D_noise: | ||
real_B = self.real_B_noisy | ||
else: | ||
real_B = self.real_B | ||
self.pred_real = self.netD(real_B) | ||
loss_D_real = self.criterionGAN(self.pred_real, True) | ||
self.loss_D_real = loss_D_real.mean() | ||
|
||
# combine loss and calculate gradients | ||
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 | ||
return self.loss_D | ||
|
||
def compute_G_loss(self): | ||
"""Calculate GAN and NCE loss for the generator""" | ||
fake = self.fake_B | ||
# First, G(A) should fake the discriminator | ||
if self.opt.lambda_GAN > 0.0: | ||
pred_fake = self.netD(fake) | ||
self.loss_G_GAN = self.criterionGAN(pred_fake, True).mean() * self.opt.lambda_GAN | ||
else: | ||
self.loss_G_GAN = 0.0 | ||
|
||
if self.opt.lambda_NCE > 0.0: | ||
self.loss_NCE = self.calculate_NCE_loss(self.real_A, self.fake_B) | ||
else: | ||
self.loss_NCE, self.loss_NCE_bd = 0.0, 0.0 | ||
|
||
if self.opt.nce_idt and self.opt.lambda_NCE > 0.0: | ||
self.loss_NCE_Y = self.calculate_NCE_loss(self.real_B, self.idt_B) | ||
loss_NCE_both = (self.loss_NCE + self.loss_NCE_Y) * 0.5 | ||
else: | ||
loss_NCE_both = self.loss_NCE | ||
if not self.opt.regression: | ||
self.loss_sem = self.criterionCLS(self.pred_fake_B, self.input_A_label) | ||
else: | ||
self.loss_sem = self.criterionCLS(self.pred_fake_B.squeeze(1), self.input_A_label) | ||
if self.loss_CLS.detach().item() > self.opt.semantic_threshold: | ||
self.loss_sem = 0 * self.loss_sem | ||
self.loss_G = self.loss_G_GAN + loss_NCE_both + self.loss_sem | ||
|
||
return self.loss_G | ||
|
||
def calculate_NCE_loss(self, src, tgt): | ||
n_layers = len(self.nce_layers) | ||
feat_q = self.netG(tgt, self.nce_layers, encode_only=True) | ||
|
||
if self.opt.flip_equivariance and self.flipped_for_equivariance: | ||
feat_q = [torch.flip(fq, [3]) for fq in feat_q] | ||
|
||
feat_k = self.netG(src, self.nce_layers, encode_only=True) | ||
feat_k_pool, sample_ids = self.netF(feat_k, self.opt.num_patches, None) | ||
feat_q_pool, _ = self.netF(feat_q, self.opt.num_patches, sample_ids) | ||
|
||
total_nce_loss = 0.0 | ||
for f_q, f_k, crit, nce_layer in zip(feat_q_pool, feat_k_pool, self.criterionNCE, self.nce_layers): | ||
if self.opt.contrastive_noise>0.0: | ||
f_q=gaussian(f_q,self.opt.contrastive_noise) | ||
f_k=gaussian(f_k,self.opt.contrastive_noise) | ||
loss = crit(f_q, f_k) * self.opt.lambda_NCE | ||
total_nce_loss += loss.mean() | ||
|
||
return total_nce_loss / n_layers | ||
|
||
|
||
def compute_CLS_loss(self): | ||
label_A = self.input_A_label | ||
# forward only real source image through semantic classifier | ||
pred_A = self.netCLS(self.real_A) | ||
if not self.opt.regression: | ||
self.loss_CLS = self.opt.lambda_sem * self.criterionCLS(pred_A, label_A) | ||
else: | ||
self.loss_CLS = self.opt.lambda_sem * self.criterionCLS(pred_A.squeeze(1), label_A) | ||
if self.opt.train_cls_B: | ||
label_B = self.input_B_label | ||
pred_B = self.netCLS(self.real_B) | ||
if not self.opt.regression: | ||
self.loss_CLS += self.opt.lambda_sem * self.criterionCLS(pred_B, label_B) | ||
else: | ||
self.loss_CLS += self.opt.lambda_sem * self.criterionCLS(pred_B.squeeze(1), label_B) | ||
|
||
return self.loss_CLS |