-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_attack.py
236 lines (194 loc) · 6.06 KB
/
run_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import numpy as np
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
from propinf.attack.attack_utils import AttackUtil
import propinf.data.ModifiedDatasets as data
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
def remove_chars(string, chars):
out = ""
for c in string:
if c not in chars:
out += c
return out
def string_to_float_list(string):
# Remove spaces
string = remove_chars(string, " ")
# Remove brackets
string = string[1:-1]
# Split string over commas
tokens = string.split(",")
out_array = []
for token in tokens:
out_array.append(float(token))
return out_array
def string_to_tuple_list(string):
# Remove spaces
string = remove_chars(string, " ()")
print
# Remove brackets
string = string[1:-1]
# Split string over commas
tokens = string.split(",")
targets = []
for i in range(0, len(tokens)//2+1, 2):
targets.append((tokens[i], tokens[i+1]))
return targets
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-dat',
'--dataset',
help='dataset name',
type=str,
default='adult'
)
parser.add_argument(
'-tp',
'--targetproperties',
help='list of categories and target attributes. e.g. [(sex, Female), (occupation, Sales)]',
type=str,
default='[(sex, Female), (occupation, Sales)]'
)
parser.add_argument(
'-t0',
'--t0frac',
help='t0 fraction of target property',
type=float,
default=0.4
)
parser.add_argument(
'-t1',
'--t1frac',
help='t1 fraction of target property',
type=float,
default=0.6
)
parser.add_argument(
'-sm',
'--shadowmodels',
help='number of shadow models',
type=int,
default=4
)
parser.add_argument(
'-p',
'--poisonlist',
help='list of poison percent',
type=str,
default= '[0.03, 0.05]'
)
parser.add_argument(
'-d',
'--device',
help='PyTorch device',
type=str,
default= 'cpu'
)
parser.add_argument(
'-fsub',
'--flagsub',
help='set to True if want to use the optimized attack for large propertie',
type=bool,
default= False
)
parser.add_argument(
'-subcat',
'--subcategories',
help='list of sub-catogories and target attributes, e.g. [(marital-status, Never-married)]',
type=str,
default='[(marital-status, Never-married)]'
)
parser.add_argument(
'-q',
'--nqueries',
help='number of black-box queries',
type=int,
default=1000
)
parser.add_argument(
'-nt',
'--ntrials',
help='number of trials',
type=int,
default=1
)
arguments = vars(parser.parse_args())
arguments["poisonlist"] = string_to_float_list(arguments["poisonlist"])
arguments["targetproperties"] = string_to_tuple_list(arguments["targetproperties"])
if arguments["subcategories"]:
arguments["subcategories"] = string_to_tuple_list(arguments["subcategories"])
print("Running SNAP on the Following Target Properties:")
for i in range(len(arguments["targetproperties"])):
print(f"{arguments['targetproperties'][i][0]}={arguments['targetproperties'][i][1]}")
print("-"*10)
cat_columns, cont_columns = data.get_adult_columns()
dataset = arguments["dataset"]
df_train, df_test = data.load_data(dataset, one_hot=False)
categories = [prop[0] for prop in arguments["targetproperties"]]
target_attributes = [" " + prop[1] for prop in arguments["targetproperties"]]
if arguments["subcategories"]:
sub_categories = [prop[0] for prop in arguments["subcategories"]]
sub_attributes = [" " + prop[1] for prop in arguments["subcategories"]]
else:
sub_categories = None
sub_attributes = None
t0 = arguments["t0frac"]
t1 = arguments["t1frac"]
n_trials = arguments["ntrials"]
n_queries = arguments["nqueries"]
num_query_trials = 10
avg_success = {}
pois_list = arguments["poisonlist"]
attack_util = AttackUtil(
target_model_layers=[32, 16],
df_train=df_train,
df_test=df_test,
cat_columns=cat_columns,
verbose=False,
)
for pois_idx, user_percent in enumerate(pois_list):
avg_success[user_percent] = 0.0
attack_util.set_attack_hyperparameters(
categories=categories,
target_attributes=target_attributes,
sub_categories=sub_categories,
sub_attributes=sub_attributes,
subproperty_sampling=arguments["flagsub"],
poison_percent=user_percent,
poison_class=1,
t0=t0,
t1=t1,
num_queries=n_queries,
num_target_models=10,
)
attack_util.set_shadow_model_hyperparameters(
device=arguments["device"],
num_workers=1,
batch_size=256,
layer_sizes=[32,16],
verbose=False,
mini_verbose=False,
epochs=20,
tol=1e-6,
)
for i in range(n_trials):
attack_util.generate_datasets()
attack_util.train_and_poison_target(need_metrics=False)
(
out_M0,
out_M1,
threshold,
correct_trials,
) = attack_util.property_inference_categorical(
num_shadow_models=arguments["shadowmodels"],
query_trials=num_query_trials,
)
avg_success[user_percent] = (
avg_success[user_percent] + correct_trials / n_trials
)
print("Attack Accuracy:")
for key in avg_success:
print(f"{key*100:.2f}% Poisoning: {avg_success[key]}")