-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathcauchy_principal_value.html
162 lines (136 loc) · 4.3 KB
/
cauchy_principal_value.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
<html>
<head>
<title>
CAUCHY_PRINCIPAL_VALUE - Estimate Singular Integrals
</title>
</head>
<body bgcolor="#eeeeee" link="#cc0000" alink="#ff3300" vlink="#000055">
<h1 align = "center">
CAUCHY_PRINCIPAL_VALUE <br> Estimate Singular Integrals
</h1>
<hr>
<p>
<b>CAUCHY_PRINCIPAL_VALUE</b>
is a MATLAB library which
uses Gauss-Legendre quadrature to estimate the Cauchy Principal Value
of certain singular integrals.
</p>
<p>
The singular integrals to be considered will have the form:
<pre>
Integral ( a <= t <= b ) f(t) / ( t - x ) dt
</pre>
The Cauchy Principal Value is defined as
<pre>
CPV = limit ( s --> x ) Integral ( a <= t <= s ) f(t) / ( t - x ) dt
+ limit ( x <-- s ) Integral ( s <= t <= b ) f(t) / ( t - x ) dt
</pre>
</p>
<p>
We suppose that our singular integral is posed on an interval that is
symmetric with respect to the location of the singularity:
<pre>
Integral ( x-d <= t <= x+d ) f(t) / ( t - x ) dt
</pre>
and we propose to estimate the integral using a Gauss-Legendre rule of
even order N:
<pre>
CPV approx sum ( 1 <= i <= N ) w(i) * f(xi(i)*d+x) / xi(i)
</pre>
where xi(i) and w(i) are the points and weights, respectively, of
the Gauss-Legendre rule.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>CAUCHY_PRINCIPAL_VALUE</b> is available in
<a href = "../../c_src/cauchy_principal_value/cauchy_principal_value.html">a C version</a> and
<a href = "../../cpp_src/cauchy_principal_value/cauchy_principal_value.html">a C++ version</a> and
<a href = "../../f77_src/cauchy_principal_value/cauchy_principal_value.html">a FORTRAN77 version</a> and
<a href = "../../f_src/cauchy_principal_value/cauchy_principal_value.html">a FORTRAN90 version</a> and
<a href = "../../m_src/cauchy_principal_value/cauchy_principal_value.html">a MATLAB version</a> and
<a href = "../../py_src/cauchy_principal_value/cauchy_principal_value.html">a Python version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/quadrule/quadrule.html">
QUADRULE</a>,
a MATLAB library which
defines quadrature rules for approximating an integral over a 1D domain.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Julian Noble,<br>
Gauss-Legendre Principal Value Integration,<br>
Computing in Science and Engineering,<br>
Volume 2, Number 1, January-February 2000, pages 92-95.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cpv.m">cpv.m</a>,
estimates the Cauchy Principal Value using Gauss-Legendre quadrature.
</li>
<li>
<a href = "legendre_set.m">legendre_set.m</a>,
returns the points and weights for a Gauss-Legendre quadrature rule.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "cpv_test.m">cpv_test.m</a>, calls all the tests;
</li>
<li>
<a href = "cpv_test_output.txt">cpv_test_output.txt</a>,
the output file.
</li>
<li>
<a href = "cpv_test01.m">cpv_test01.m</a>,
tests CPV on integral ( -1 <= t <= + 1 ) exp(t)/t dt.
</li>
<li>
<a href = "cpv_test02.m">cpv_test02.m</a>,
tests CPV on integral ( 1-d <= t <= 1+d ) 1/(1-t^3) dt.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last modified on 31 March 2015.
</i>
<!-- John Burkardt -->
</body>
</html>