Skip to content

UCL MSc Robotics and Computation Project, Semantic Validation in Structure from Motion

License

Notifications You must be signed in to change notification settings

joerowelll/COMP0132_RJXZ25

Repository files navigation

COMP0132 MSc Robotics and Computation Project

Semantic Validation in Structure From Motion

A project to incorporate semantics into SfM using DeepLab semantic segmentation, for point cloud filtering.

To clone (including submodules)

git clone --recurse-submodules --remote-submodules https://github.com/joerowelll/COMP0132_RJXZ25.git

Table of Contents
  1. About The Project
  2. Project Structure
  3. Data-sets
  4. Basic Usage
  5. Structure from Motion with COLMAP
  6. Semantic Segmentation with DeepLab
  7. Planar Reconstruction
  8. Database Manipulation
  9. License
  10. Contact
  11. Acknowledgments

About the Project

Project Introduction Video

Project Structure

COMP0132_RJXZ25
├── data
│   └── out90.png ...etc
├── database
│   ├── semantics.py
│   ├── plane_intersection.py
│   ├── visualise_model.py
│   └── readBlobData.py
├── featureDescriptors
│   ├── SURF.m
│   ├── sift_descriptor.asv
│   └── sift_descriptor.m
├── images
├── research/deeplab
├── semanticSegmentation
├── structureFromMotion
├── 3rdParty
│   ├── ceres-solver
│   ├── colmap
│   ├── PlaneRCNN
│   └── DeepLab
├── report
│   ├── latex.tex files
│   └── report.pdf
├── LICENSE.TXT
└── README.md

Data-sets

Find the focus key data-set Brunswick Square Brighton on Google Drive. File Structure:

COMP0132
├── louvre
│   └── 
├── brighton
│   ├── semantic_labelled_SIFT_keypoints
│   │   ├── labelled3Dpoints.csv
│   │   └── brightonKeypoints.csv
│   ├── segmentedImages
│   │   └── out1.png ...etc
│   ├── segmentation_videos
│   │   └── semantic_segmentation_video.mp4
│   ├── segmentation_video_frames_1
│   │   └── semantic_segmentation0001.png ...etc
│   ├── images
│   │   └── out1.png ...etc
│   ├── colmap_output
│   │   ├── undistorted
│   │   │   ├── stereo
│   │   │   │   ├── normal_maps
│   │   │   │   ├── depth_maps
│   │   │   │   ├── consistency_graphs
│   │   │   │   ├── patch-match.cfg
│   │   │   │   └── fusion.cfg
│   │   │   ├── sparse
│   │   │   │   ├── points3D.bin
│   │   │   │   ├── images.bin
│   │   │   │   └── cameras.bin
│   │   │   ├── images
│   │   │   ├── run-colmap-photometric.sh
│   │   │   └── run-colmap-geometric.sh
│   │   ├── sparse
│   │   │   └── 0
│   │   │       ├── project.ini
│   │   │       ├── points3D.bin
│   │   │       ├── images.bin
│   │   │       ├── cameras.bin
│   │   │       ├── brighton.ply
│   │   │       └──  brighton.nvm
│   │   ├── mpi
│   │   ├── database.db-wal
│   │   ├── database.sb-shm
│   │   ├── database.db
│   │   └── colmap_output.txt
│   ├── segmentation_brighton.zip
│   └── brightonImages.zip


Basic Usage

Dependencies:

The code depends on the following third-party libraries: -Eigen -Ceres All of these libraries are added to this repository as submodules, or directly as source files.

Preparation

  • Clone the repository to your computer including all submodules.
  • Build Ceres in folders 3rdParty/build-ceres-solver/.
  • Compile the code using the CMakeLists.txt file:
    mkdir build
    cd build
    cmake ..
    make -j4
    cd ..
  • Make conda environment:
git clone https://github.com/joerowelll/COMP0132_RJXZ25.git
cd COMP0132_RJXZ25
conda env create --name comp0132 --file=environments.yml

Semantic Labelling of 3D Points

Example Usage:

cd COMP0132/databases
python database.py  --database_path ~/COMP0132/brighton_workspace/database.db
Planar-Orthogonal Scene Abstraction

Example usage:

    cd orthogonal-planes/ply_detect_refine # go to scene abstraction directory
    bin/PLY_PPDetectRefine --img test_single.ply # run code

Structure from Motion with COLMAP

COLMAP

Semantic Segmentation with DeepLab

Semantic Segmentation on Brighton Data-set Video Demo

Semantic Segmentation Demo DeepLab

Planar Reconstruction

Database Manipulation

USAGE:

$ python semantics.py  --database_path PATH_TO_DATABASE.db

Example usage:

$ python semantics.py  --database_path ~/COMP0132/brighton_workspace/database.db

Reccommended file structure is as follows:

COMP0132

Licence

Contact

mailto:[email protected]

Acknowledgments

Supervisors: Professor Simon Julier, Ziwen Lu
Planar reconstruction depends on Detection and Refinement of Orhtogonal Plane Pairs and Derived Orthogonality Primitives

About

UCL MSc Robotics and Computation Project, Semantic Validation in Structure from Motion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published