Skip to content

Latest commit

 

History

History
218 lines (155 loc) · 8.13 KB

let-function.rst

File metadata and controls

218 lines (155 loc) · 8.13 KB

Lexical Scoping

JEP:11
Author: James Saryerwinnie
Status: draft
Created:24-Feb-2015

Abstract

This JEP proposes a new function let() (originally proposed by Michael Dowling) that allows for evaluating an expression with an explicitly defined lexical scope. This will require some changes to the lookup semantics in JMESPath to introduce scoping, but provides useful functionality such as being able to refer to elements defined outside of the current scope used to evaluate an expression.

Motivation

As a JMESPath expression is being evaluated, the current element, which can be explicitly referred to via the @ token, changes as expressions are evaluated. Given a simple sub expression such as foo.bar, first the foo expression is evaluted with the starting input JSON document, and the result of that expression is then used as the current element when the bar element is evaluted. Conceptually we're taking some object, and narrowing down its current element as the expression is evaluted.

Once we've drilled down to a specific current element, there is no way, in the context of the currently evaluated expression, to refer to any elements outside of that element. One scenario where this is problematic is being able to refer to a parent element.

For example, suppose we had this data:

{"first_choice": "WA",
 "states": [
   {"name": "WA", "cities": ["Seattle", "Bellevue", "Olympia"]},
   {"name": "CA", "cities": ["Los Angeles", "San Francisco"]},
   {"name": "NY", "cities": ["New York City", "Albany"]},
 ]
}

Let's say we wanted to get the list of cities of the state corresponding to our first_choice key. We'll make the assumption that the state names are unique in the states list. This is currently not possible with JMESPath. In this example we can hard code the state WA:

states[?name==`WA`].cities

but it is not possible to base this on a value of first_choice, which comes from the parent element. This JEP proposes a solution that makes this possible in JMESPath.

Specification

There are two components to this JEP, a new function, let(), and a change to the way that identifiers are resolved.

The let() Function

The let() function is heavily inspired from the let function commonly seen in the Lisp family of languages:

The let function is defined as follows:

any let(object scope, expression->any expr)

let is a function that takes two arguments. The first argument is a JSON object. This hash defines the names and their corresponding values that will be accessible to the expression specified in the second argument. The second argument is an expression reference that will be evaluated.

Resolving Identifiers

Prior to this JEP, identifiers are resolved by consulting the current context in which the expression is evaluted. For example, using the same search function as defined in the JMESPath specification, the evaluation of:

search(foo, {"foo": "a", "bar": "b"}) -> "a"

will result in the foo identifier being resolved in the context of the input object {"foo": "a", "bar": "b"}. The context object defines foo as a, which results in the identifier foo being resolved as a.

In the case of a sub expression, where the current evaluation context changes once the left hand side of the sub expression is evaluted:

search(a.b, {"a": {"b": "y"}) -> "y"

The identifier b is resolved with a current context of {"b": "y"}, which results in a value of y.

This JEP adds an additional step to resolving identifiers. In addition to the implicit evaluation context that changes based on the result of continually evaluating expressions, the let() command allows for additional contexts to be specified, which we refer to by the common name scope. The steps for resolving an identifier are:

  • Attempt to lookup the identifier in the current evaluation context.
  • If this identifier is not resolved, look up the value in the current scope provided by the user.
  • If the idenfitier is not resolved and there is a parent scope, attempt to resolve the identifier in the parent scope. Continue doing this until there is no parent scope, in which case, if the identifier has not been resolved, the identifier is resolved as null.

Parent scopes are created by nested let() calls.

Below are a few examples to make this more clear. First, let's examine the case where the identifier can be resolved from the current evaluation context:

search(let({a: `x`}, &b), {"b": "y"}) -> "y"

In this scenario, we are evaluating the expression b, with the context object of {"b": "y"}. Here b has a value of y, so the result of this function is y.

Now let's look at an example where an identifier is resolved from a scope object provided via let():

search(let({a: `x`}, &a, {"b": "y"})) -> "x"

Here, we're trying to resolve the a identifier. The current evaluation context, {"b": "y"}, does not define a. Normally, this would result in the identifier being resolved as null:

search(a, {"b": "y"}) -> null

However, we now fall back to looking in the provided scope object {"a": "x"}, which was provided as the first argument to let. Note here that the value of a has a value of "x", so the identifier is resolved as "x", and the return value of the let() function is "x".

Finally, let's look at an example of parent scopes. Consider the following expression:

search(let({a: `x`}, &let({b: `y`}, &{a: a, b: b, c: c})),
       {"c": "z"}) -> {"a": "x", "b": "y", "c": "z"}

Here we have nested let calls, and the expression we are trying to evaluate is the multiselect hash {a: a, b: b, c: c}. The c identifier comes from the evaluation context {"c": "z"}. The b identifier comes from the scope object in the second let call: {b: `y`}. And finally, here's the lookup process for the a identifier:

  • Is a defined in the current evaluation context? No.
  • Is a defined in the scope provided by the user? No.
  • Is there a parent scope? Yes
  • Does the parent scope, {a: `x`}, define a? Yes, a has the value of "x", so a is resolved as the string "x".

Current Node Evaluation

While the JMESPath specification defines how the current node is determined, it is worth explicitly calling out how this works with the let() function and expression references. Consider the following expression:

a.let({x: `x`}, &b.let({y: `y`}, &c))

Given the input data:

{"a": {"b": {"c": "foo"}}}

When the expression c is evaluated, the current evaluation context is {"c": "foo"}. This is because this expression isn't evaluated until the second let() call evaluates the expression, which does not occur until the first let() function evaluates the expression.

Motivating Example

With these changes defined, the expression in the "Motivation" section can be be written as:

let({first_choice: first_choice}, &states[?name==first_choice].cities)

Which evalutes to ["Seattle", "Bellevue", "Olympia"].

Rationale

If we just consider the feature of being able to refer to a parent element, this approach is not the only way to accomplish this. We could also allow for explicit references using a specific token, say $. The original example in the "Motivation" section would be:

states[?name==$.first_choice].cities

While this could work, this has a number of downsides, the biggest one being that you'll need to always keep track of the parent element. You don't know ahead of time if you're going to need the parent element, so you'll always need to track this value. It also doesn't handle nested lexical scopes. What if you wanted to access a value in the grand parent element? Requiring an explicit binding approach via let() handles both these cases, and doesn't require having to track parent elements. You only need to track additional scope when let() is used.