-
Notifications
You must be signed in to change notification settings - Fork 491
/
vector_of_vectors_example.cpp
100 lines (83 loc) · 3.59 KB
/
vector_of_vectors_example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2011-2024 Jose Luis Blanco ([email protected]).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include <nanoflann.hpp>
using namespace nanoflann;
#include <cstdlib>
#include <ctime>
#include <iostream>
#include "KDTreeVectorOfVectorsAdaptor.h"
const int SAMPLES_DIM = 15;
typedef std::vector<std::vector<double>> my_vector_of_vectors_t;
void generateRandomPointCloud(
my_vector_of_vectors_t& samples, const size_t N, const size_t dim,
const double max_range = 10.0)
{
std::cout << "Generating " << N << " random points...";
samples.resize(N);
for (size_t i = 0; i < N; i++)
{
samples[i].resize(dim);
for (size_t d = 0; d < dim; d++)
samples[i][d] = max_range * (rand() % 1000) / (1000.0);
}
std::cout << "done\n";
}
void kdtree_demo(const size_t nSamples, const size_t dim)
{
my_vector_of_vectors_t samples;
const double max_range = 20;
// Generate points:
generateRandomPointCloud(samples, nSamples, dim, max_range);
// Query point:
std::vector<double> query_pt(dim);
for (size_t d = 0; d < dim; d++)
query_pt[d] = max_range * (rand() % 1000) / (1000.0);
// construct a kd-tree index:
// Dimensionality set at run-time (default: L2)
// ------------------------------------------------------------
typedef KDTreeVectorOfVectorsAdaptor<my_vector_of_vectors_t, double>
my_kd_tree_t;
my_kd_tree_t mat_index(dim /*dim*/, samples, 10 /* max leaf */);
// do a knn search
const size_t num_results = 3;
std::vector<size_t> ret_indexes(num_results);
std::vector<double> out_dists_sqr(num_results);
nanoflann::KNNResultSet<double> resultSet(num_results);
resultSet.init(&ret_indexes[0], &out_dists_sqr[0]);
mat_index.index->findNeighbors(resultSet, &query_pt[0]);
std::cout << "knnSearch(nn=" << num_results << "): \n";
for (size_t i = 0; i < resultSet.size(); i++)
std::cout << "ret_index[" << i << "]=" << ret_indexes[i]
<< " out_dist_sqr=" << out_dists_sqr[i] << std::endl;
}
int main()
{
// Randomize Seed
srand(static_cast<unsigned int>(time(nullptr)));
kdtree_demo(1000 /* samples */, SAMPLES_DIM /* dim */);
}