-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
464 lines (384 loc) · 17.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import torch
import numpy as np
import random
import torch.nn.functional as F
import argparse
import os
from tqdm import trange
from tqdm.auto import tqdm
from transformers import (
AutoTokenizer,
AdamW,
get_linear_schedule_with_warmup,
TrainingArguments,
)
from datasets import load_from_disk
from torch.utils.data import DataLoader
from dataset import (
BiEncoder_Dataset_Original,
BiEncoder_Dataset_Overflow,
CrossEncoder_Dataset,
)
from utils import CustomSampler
from encoder import (
BertEncoder_For_CrossEncoder,
RoBertaEncoder_For_CrossEncoder,
BertEncoder_For_BiEncoder,
)
def set_seed(random_seed):
"""
Random number fixed
"""
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
random.seed(random_seed)
np.random.seed(random_seed)
def biencoder_train(
args,
queries,
passages,
tokenizer,
p_encoder,
q_encoder,
sampler=None,
overflow=True,
):
"""
In-batch Negative BiEncoder Train
Arg:
queires: List
passages: List
tokenizer: BertTokenizer
p_encoder: BertEncoder_For_BiEncoder
q_encoder: BertEncoder_For_BiEncoder
sampler: Sampler
you can use the CustomSampler
if you don't want to use CustomSampler,
you have to insert 'shuffle=True' in your DataLoader
overflow: bool
If you want data with overflow technique,
keep overflow as true, and if you want to use data
that simply cut passage into max_length, use False.
"""
if overflow == True:
overflow_biencoder = BiEncoder_Dataset_Overflow(
queries, passages, tokenizer)
biencoder_dataset = overflow_biencoder._return_train_dataset()
else:
overflow_biencoder = BiEncoder_Dataset_Original(
queries, passages, tokenizer)
biencoder_dataset = overflow_biencoder._return_train_dataset()
if sampler is not None:
sampler = sampler(biencoder_dataset, args.per_device_train_batch_size)
train_dataloader = DataLoader(
biencoder_dataset,
batch_size=args.per_device_train_batch_size,
sampler=sampler,
drop_last=True,
)
else:
train_dataloader = DataLoader(
biencoder_dataset,
batch_size=args.per_device_train_batch_size,
shuffle=True,
drop_last=True,
)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in p_encoder.named_parameters() if not any(
nd in n for nd in no_decay)], "weight_decay": args.weight_decay},
{"params": [p for n, p in p_encoder.named_parameters() if any(
nd in n for nd in no_decay)], "weight_decay": 0.0},
{"params": [p for n, p in q_encoder.named_parameters() if not any(
nd in n for nd in no_decay)], "weight_decay": args.weight_decay},
{"params": [p for n, p in q_encoder.named_parameters() if any(
nd in n for nd in no_decay)], "weight_decay": 0.0}
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=args.learning_rate,
# eps=args.adam_epsilon
)
t_total = (
len(train_dataloader)
// args.gradient_accumulation_steps
* args.num_train_epochs
)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
p_encoder.zero_grad()
q_encoder.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
q_encoder.train()
p_encoder.train()
for epoch, _ in enumerate(train_iterator):
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
loss_value = 0 # Use it when you use accumulation.
losses = 0
for step, batch in enumerate(epoch_iterator):
if torch.cuda.is_available():
batch = tuple(t.cuda() for t in batch)
p_inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
}
q_inputs = {
"input_ids": batch[3],
"attention_mask": batch[4],
"token_type_ids": batch[5],
}
p_outputs = p_encoder(**p_inputs) # (batch_size, emb_dim)
q_outputs = q_encoder(**q_inputs) # (batch_size, emb_dim)
# Calculate the similarity & loss score for "in batch negative".
sim_scores = torch.matmul(
q_outputs, torch.transpose(p_outputs, 0, 1)
) # (batch_size, emb_dim) x (emb_dim, batch_size) = (batch_size, batch_size)
# target: position of positive samples = diagonal element
# targets = torch.arange(0, args.per_device_train_batch_size).long()
targets = torch.arange(0, len(p_inputs["input_ids"])).long()
if torch.cuda.is_available():
targets = targets.to("cuda")
sim_scores = F.log_softmax(sim_scores, dim=1)
loss = F.nll_loss(sim_scores, targets)
########################No ACCUMULATION#########################
losses += loss.item()
if step % 100 == 0:
print(f"{epoch}epoch loss: {losses/(step+1)}")
q_encoder.zero_grad()
p_encoder.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
################################################################
# #############################ACCUMULATION#########################
# loss.backward()
# if (step+1) % args.gradient_accumulation_steps == 0 :
# optimizer.step()
# scheduler.step()
# self.q_encoder.zero_grad()
# self.p_encoder.zero_grad()
# losses += loss.item()
# if (step+1) % 100 == 0 :
# train_loss = losses / 100
# print(f'training loss: {train_loss:4.4}')
# losses = 0
# ##################################################################
del p_inputs, q_inputs
return p_encoder, q_encoder
def crossencoder_train(args, queries, passages, tokenizer, cross_encoder, sampler=None):
"""
In-batch Negative CrossEncoder Train
Arg:
queries: List
passages: List
tokenizer: BertTokenizer or RoBertaTokenizer
cross_encoder: BertEncoder_For_CrossEncoder or RoBertaEncoder_For_CrossEncoder
sampler: Sampler
you can use the CustomSampler
if you don't want to use CustomSampler,
you have to insert 'shuffle=True' in your DataLoader
"""
crossencoder_dataset = CrossEncoder_Dataset(queries, passages, tokenizer)
train_dataset = crossencoder_dataset._return_train_dataset()
if sampler is not None:
sampler = sampler(train_dataset, args.per_device_train_batch_size)
train_dataloader = DataLoader(
train_dataset,
batch_size=args.per_device_train_batch_size,
sampler=sampler,
drop_last=True,
)
else:
train_dataloader = DataLoader(
train_dataset,
batch_size=args.per_device_train_batch_size,
shuffle=True,
drop_last=True,
)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in cross_encoder.named_parameters() if not any(
nd in n for nd in no_decay)], "weight_decay": args.weight_decay},
{"params": [p for n, p in cross_encoder.named_parameters() if any(
nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=args.learning_rate,
# eps=args.adam_epsilon
)
t_total = (
len(train_dataloader)
// args.gradient_accumulation_steps
* args.num_train_epochs
)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
cross_encoder.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
cross_encoder.train()
for epoch, _ in enumerate(train_iterator):
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
losses = 0
for step, batch in enumerate(epoch_iterator):
cross_inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
# 'token_type_ids' : batch[2] # When you use BertModel, Unannotate it
}
for k in cross_inputs.keys():
cross_inputs[k] = cross_inputs[k].tolist()
# -- Make In-Batch Negative Sampling
new_input_ids = []
new_attention_mask = []
# new_token_type_ids = [] # When you use BertModel, Unannotate it
for i in range(len(cross_inputs["input_ids"])):
sep_index = cross_inputs["input_ids"][i].index(tokenizer.sep_token_id) # [SEP] token의 index
for j in range(len(cross_inputs["input_ids"])):
# -- Make Negative Samples => i_th query with j_th passage
# positive: i_th query + i_th passage
# negative: i_th query + j_th passage
# Note: Since multiple passages can be obtained for one query, the i_th query and j_th passage can be positive samples.
# Because of this, Sampling is performed in prepraration for this case. However, there is no significant difference in performance when shuffle is used as sampling
query_id = cross_inputs["input_ids"][i][:sep_index]
query_att = cross_inputs["attention_mask"][i][:sep_index]
# query_tok = cross_inputs['token_type_ids'][i][:sep_index] # When you use BertModel, Unannotate it
context_id = cross_inputs["input_ids"][j][sep_index:]
context_att = cross_inputs["attention_mask"][j][sep_index:]
# context_tok = cross_inputs['token_type_ids'][j][sep_index:] # When you use BertModel, Unannotate it
query_id.extend(context_id)
query_att.extend(context_att)
# query_tok.extend(context_tok) # When you use BertModel, Unannotate it
new_input_ids.append(query_id)
new_attention_mask.append(query_att)
# new_token_type_ids.append(query_tok) # When you use BertModel, Unannotate it
new_input_ids = torch.tensor(new_input_ids)
new_attention_mask = torch.tensor(new_attention_mask)
# new_token_type_ids = torch.tensor(new_token_type_ids) # When you use BertModel, Unannotate it
if torch.cuda.is_available():
new_input_ids = new_input_ids.to("cuda")
new_attention_mask = new_attention_mask.to("cuda")
# new_attention_mask = new_attention_mask.to('cuda') # When you use BertModel, Unannotate it
change_cross_inputs = {
"input_ids": new_input_ids,
"attention_mask": new_attention_mask,
# 'token_type_ids' : new_token_type_ids # When you use BertModel, Unannotate it
}
cross_output = cross_encoder(**change_cross_inputs)
cross_output = cross_output.view(-1, args.per_device_train_batch_size) # (batch_size, emb_dim)
# only i_th element is accepted as positive
targets = torch.arange(0, args.per_device_train_batch_size).long()
if torch.cuda.is_available():
targets = targets.to("cuda")
score = F.log_softmax(cross_output, dim=1)
loss = F.nll_loss(score, targets)
########################No ACCUMULATION#########################
losses += loss.item()
if step % 100 == 0:
print(f"{epoch}epoch loss: {losses/(step+1)}")
cross_encoder.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
################################################################
# #############################ACCUMULATION#########################
# loss.backward()
# if (step+1) % args.gradient_accumulation_steps == 0 :
# optimizer.step()
# scheduler.step()
# cross_encoder.zero_grad()
# losses += loss.item()
# if (step+1) % 100 == 0 :
# train_loss = losses / 100
# print(f'training loss: {train_loss:4.4}')
# losses = 0
# ##################################################################
return cross_encoder
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# -- mode
parser.add_argument('--encoder', type=str, default='cross', help='Biencoder can be used as the instruction "bi" and crossencoder can be used as the instruction "cross".')
parser.add_argument('--model', type=str, default='klue/bert-base', help='You can insert "klue/bert-base" or "klue/roberta-base" or "klue/roberta-base"')
# -- training arguments
parser.add_argument('--lr', type=float, default=1e-5, help="learning rate (default: 1e-5)")
parser.add_argument('--train_batch_size', type=int, default=4, help="train batch size (default: 4)")
parser.add_argument('--epochs', type=int, default=10, help="number of epochs to train (default: 10)")
parser.add_argument('--weight_decay', type=float, default=0.01, help="strength of weight decay (default: 0.01)")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="gradient accumulation steps (default: 1)")
# -- save
parser.add_argument('--output_directory', type=str, default='./save_directory/', help='Put in your save directory')
parser.add_argument('--input_directory', type=str, default='./_data/', help='Enter input_directory containing Encoder.')
sub_args = parser.parse_args()
args = TrainingArguments(
output_dir=sub_args.output_directory,
evaluation_strategy="epoch",
learning_rate=sub_args.lr,
# if you use bi-encoder, More batch size may be input than crossencoder.
per_device_train_batch_size=sub_args.train_batch_size,
gradient_accumulation_steps=sub_args.gradient_accumulation_steps,
num_train_epochs=sub_args.epochs,
weight_decay=sub_args.weight_decay,
)
set_seed(42) # magic number :)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataset = load_from_disk(
os.path.join(sub_args.input_directory, 'train_dataset')
) # put in your data path, dataset have train/valid dataset
train_dataset = dataset["train"]
if sub_args.encoder == "cross":
# you can use 'klue/bert-base' model, and you have to change the code above.
model_checkpoint = sub_args.model
if model_checkpoint.split("/")[1].split("-")[0] == "roberta":
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
cross_encoder = RoBertaEncoder_For_CrossEncoder.from_pretrained(
model_checkpoint
)
elif model_checkpoint.split("/")[1].split("-")[0] == "bert":
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
cross_encoder = BertEncoder_For_CrossEncoder.from_pretrained(
model_checkpoint
)
if torch.cuda.is_available():
cross_encoder = cross_encoder.to("cuda")
c_encoder = crossencoder_train(
args,
train_dataset["question"],
train_dataset["context"],
tokenizer,
cross_encoder,
sampler=CustomSampler,
)
torch.save(
c_encoder, os.path.join(sub_args.output_directory, 'c_encoder.pt')
)
elif sub_args.encoder == "bi":
# in this code, you just can use 'klue/bert-base' in bi-encoder because I jsut make bertmodel in bi-encoder
model_checkpoint = sub_args.model
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
passage_encoder = BertEncoder_For_BiEncoder.from_pretrained(
model_checkpoint)
question_encoder = BertEncoder_For_BiEncoder.from_pretrained(
model_checkpoint)
if torch.cuda.is_available():
passage_encoder = passage_encoder.to("cuda")
question_encoder = question_encoder.to("cuda")
p_encoder, q_encoder = biencoder_train(
args,
train_dataset["question"],
train_dataset["context"],
tokenizer,
passage_encoder,
question_encoder,
sampler=CustomSampler,
overflow=True,
)
torch.save(
p_encoder, os.path.join(sub_args.output_directory, 'p_encoder.pt')
)
torch.save(
q_encoder, os.path.join(sub_args.output_directory, 'q_encoder.pt')
)