Skip to content

jjchern/meda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About meda

This package provides R functions that replicates the behavior of four Stata commands: (1) d, (2) lookfor, (3) codebook, compact, and (4) l, sepby(). These commands present metadata records for datasets in a cleaned way.

The package is built upon two R packages: haven, which provides a labelled class that supports labelled data frames, and labelled, which makes it easier to work with labelled data frames.

Installation

Since the labelled package is still not up on CRAN, we might also install it as well.

devtools::install_github("larmarange/labelled")
devtools::install_github("jjchern/meda")

Usage

Describe and Look for Variables

library(meda)
nlsw88 = haven::read_dta("http://www.stata-press.com/data/r13/nlsw88.dta")

cb(nlsw88) # show summary statistics of a data frame
#> Source: local data frame [17 x 8]
#> 
#>              var   obs unique    mean std.dev   min     max
#>            (chr) (int)  (int)   (dbl)   (dbl) (dbl)   (dbl)
#> 1         idcode  2246   2246 2612.65 1480.86  1.00 5159.00
#> 2            age  2246     13   39.15    3.06 34.00   46.00
#> 3           race  2246      3    1.28    0.48  1.00    3.00
#> 4        married  2246      2    0.64    0.48  0.00    1.00
#> 5  never_married  2246      2    0.10    0.31  0.00    1.00
#> 6          grade  2244     16   13.10    2.52  0.00   18.00
#> 7       collgrad  2246      2    0.24    0.43  0.00    1.00
#> 8          south  2246      2    0.42    0.49  0.00    1.00
#> 9           smsa  2246      2    0.70    0.46  0.00    1.00
#> 10        c_city  2246      2    0.29    0.45  0.00    1.00
#> 11      industry  2232     12    8.19    3.01  1.00   12.00
#> 12    occupation  2237     13    4.64    3.41  1.00   13.00
#> 13         union  1878      2    0.25    0.43  0.00    1.00
#> 14          wage  2246    967    7.77    5.76  1.00   40.75
#> 15         hours  2242     62   37.22   10.51  1.00   80.00
#> 16       ttl_exp  2246   1546   12.53    4.61  0.12   28.88
#> 17        tenure  2231    259    5.98    5.51  0.00   25.92
#> Variables not shown: var_label (chr)

d(nlsw88) # shows variable labels, and whether value label exists for certain variables
#> Source: local data frame [17 x 6]
#> 
#>              var  type class val_label                     label
#>            (chr) (chr) (chr)     (lgl)                     (chr)
#> 1         idcode   int   int     FALSE                    NLS id
#> 2            age   int   int     FALSE       age in current year
#> 3           race   int   lbl      TRUE                      race
#> 4        married   int   lbl      TRUE                   married
#> 5  never_married   int   int     FALSE             never married
#> 6          grade   int   int     FALSE current grade complete...
#> 7       collgrad   int   lbl      TRUE          college graduate
#> 8          south   int   int     FALSE            lives in south
#> 9           smsa   int   lbl      TRUE             lives in SMSA
#> 10        c_city   int   int     FALSE  lives in central city...
#> 11      industry   int   lbl      TRUE                  industry
#> 12    occupation   int   lbl      TRUE                occupation
#> 13         union   int   lbl      TRUE              union worker
#> 14          wage   dbl   nmr     FALSE               hourly wage
#> 15         hours   int   int     FALSE        usual hours worked
#> 16       ttl_exp   dbl   nmr     FALSE  total work experience...
#> 17        tenure   dbl   nmr     FALSE        job tenure (years)
#> Variables not shown: head (chr)

# Note that there's a value label for the variable "race", thus we can checkout the values
labelled::val_labels(nlsw88$race)
#> white black other 
#>     1     2     3

# Note also that if a variable label is too long, we can find out the whole label with
labelled::var_label(nlsw88$grade)
#> [1] "current grade completed"

# Or look at all the variable labels
labelled::var_label(nlsw88)
#> $idcode
#> [1] "NLS id"
#> 
#> $age
#> [1] "age in current year"
#> 
#> $race
#> [1] "race"
#> 
#> $married
#> [1] "married"
#> 
#> $never_married
#> [1] "never married"
#> 
#> $grade
#> [1] "current grade completed"
#> 
#> $collgrad
#> [1] "college graduate"
#> 
#> $south
#> [1] "lives in south"
#> 
#> $smsa
#> [1] "lives in SMSA"
#> 
#> $c_city
#> [1] "lives in central city"
#> 
#> $industry
#> [1] "industry"
#> 
#> $occupation
#> [1] "occupation"
#> 
#> $union
#> [1] "union worker"
#> 
#> $wage
#> [1] "hourly wage"
#> 
#> $hours
#> [1] "usual hours worked"
#> 
#> $ttl_exp
#> [1] "total work experience"
#> 
#> $tenure
#> [1] "job tenure (years)"

lookfor(nlsw88, "mar") # search for variables that are related to marriage
#> Source: local data frame [2 x 6]
#> 
#>             var  type class val_label         label         head
#>           (chr) (chr) (chr)     (lgl)         (chr)        (chr)
#> 1       married   int   lbl      TRUE       married 0 0 0 1 1...
#> 2 never_married   int   int     FALSE never married 0 0 1 0 0...

List Observations and Separated by Some ID Variable

library(dplyr)
abdata = haven::read_dta("http://www.stata-press.com/data/r13/abdata.dta")
abdata %>% select(id, year, wage) %>% l(by = "id", n = 30)
#>    id year             wage
#> 1   1 1977 13.1515998840332
#> 2   1 1978 12.3017997741699
#> 3   1 1979 12.8395004272461
#> 4   1 1980 13.8038997650146
#> 5   1 1981 14.2896995544434
#> 6   1 1982 14.8681001663208
#> 7   1 1983 13.7784004211426
#> 8                          
#> 9   2 1977 14.7909002304077
#> 10  2 1978 14.1035995483398
#> 11  2 1979 14.9533996582031
#> 12  2 1980 15.4910001754761
#> 13  2 1981 16.1968994140625
#> 14  2 1982 16.1313991546631
#> 15  2 1983 16.3050994873047
#> 16                         
#> 17  3 1977 22.6919994354248
#> 18  3 1978 20.6937999725342
#> 19  3 1979 21.2047996520996
#> 20  3 1980   22.19700050354
#> 21  3 1981 24.8714008331299
#> 22  3 1982 24.8446998596191
#> 23  3 1983 28.9076995849609
#> 24                         
#> 25  4 1977 14.8283004760742
#> 26  4 1978 14.8379001617432
#> 27  4 1979  14.875599861145
#> 28  4 1980 15.2332000732422
#> 29  4 1981 17.2528991699219
#> 30  4 1982 19.3141994476318

About

Explore metadata records for datasets in R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages