forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tasks.qs
133 lines (105 loc) · 6.31 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
namespace Quantum.Kata.SimonsAlgorithm {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// "Simon's Algorithm" kata is a series of exercises designed to teach a quantum algorithm for
// a problem of identifying a bit string that is implicitly defined (or, in other words, "hidden") by
// some oracle that satisfies certain conditions. It is arguably the most simple case of an (oracle)
// problem for which a quantum algorithm has a *provable* exponential advantage over any classical algorithm.
// Each task is wrapped in one operation preceded by the description of the task. Each task (except tasks in
// which you have to write a test) has a unit test associated with it, which initially fails. Your goal is to
// fill in the blank (marked with // ... comment) with some Q# code to make the failing test pass.
//////////////////////////////////////////////////////////////////
// Part I. Oracles
//////////////////////////////////////////////////////////////////
// Task 1.1. f(x) = x₀ ⊕ ... ⊕ xₙ₋₁ (i.e., the parity of a given bit string)
// Inputs:
// 1) N qubits in an arbitrary state |x⟩
// 2) a qubit in an arbitrary state |y⟩
// Goal: Transform state |x, y⟩ into |x, y ⊕ x₀ ⊕ x₁ ... ⊕ xₙ₋₁⟩ (⊕ is addition modulo 2).
operation Oracle_CountBits (x : Qubit[], y : Qubit) : Unit is Adj {
// ...
}
// Task 1.2. Bitwise right shift
// Inputs:
// 1) N qubits in an arbitrary state |x⟩
// 2) N qubits in an arbitrary state |y⟩
// Goal: Transform state |x, y⟩ into |x, y ⊕ f(x)⟩, where f is bitwise right shift function, i.e.,
// |y ⊕ f(x)⟩ = |y₀, y₁ ⊕ x₀, y₂ ⊕ x₁, ..., yₙ₋₁ ⊕ xₙ₋₂⟩ (⊕ is addition modulo 2).
operation Oracle_BitwiseRightShift (x : Qubit[], y : Qubit[]) : Unit is Adj {
// ...
}
// Task 1.3. Linear operator
// Inputs:
// 1) N qubits in an arbitrary state |x⟩
// 2) a qubit in an arbitrary state |y⟩
// 3) a 1xN binary matrix (represented as an Int[]) describing operator A
// (see https://en.wikipedia.org/wiki/Transformation_matrix )
// Goal: Transform state |x, y⟩ into |x, y ⊕ A(x) ⟩ (⊕ is addition modulo 2).
operation Oracle_OperatorOutput (x : Qubit[], y : Qubit, A : Int[]) : Unit is Adj {
// The following line enforces the constraint on the input arrays.
// You don't need to modify it. Feel free to remove it, this won't cause your code to fail.
EqualityFactI(Length(x), Length(A), "Arrays x and A should have the same length");
// ...
}
// Task 1.4. Multidimensional linear operator
// Inputs:
// 1) N1 qubits in an arbitrary state |x⟩ (input register)
// 2) N2 qubits in an arbitrary state |y⟩ (output register)
// 3) an N2 x N1 matrix (represented as an Int[][]) describing operator A
// (see https://en.wikipedia.org/wiki/Transformation_matrix ).
// The first dimension of the matrix (rows) corresponds to the output register,
// the second dimension (columns) - the input register,
// i.e., A[r][c] (element in r-th row and c-th column) corresponds to x[c] and y[r].
// Goal: Transform state |x, y⟩ into |x, y ⊕ A(x) ⟩ (⊕ is addition modulo 2).
operation Oracle_MultidimensionalOperatorOutput (x : Qubit[], y : Qubit[], A : Int[][]) : Unit is Adj {
// The following lines enforce the constraints on the input arrays.
// You don't need to modify them. Feel free to remove them, this won't cause your code to fail.
EqualityFactI(Length(x), Length(A[0]), "Arrays x and A[0] should have the same length");
EqualityFactI(Length(y), Length(A), "Arrays y and A should have the same length");
// ...
}
//////////////////////////////////////////////////////////////////
// Part II. Simon's Algorithm
//////////////////////////////////////////////////////////////////
// Task 2.1. State preparation for Simon's algorithm
// Inputs:
// 1) N qubits in |0⟩ state (query register)
// Goal: create an equal superposition of all basis vectors from |0...0⟩ to |1...1⟩ on query register
// (i.e. the state (|0...0⟩ + ... + |1...1⟩) / sqrt(2ᴺ)).
operation SA_StatePrep (query : Qubit[]) : Unit is Adj {
// ...
}
// Task 2.2. Quantum part of Simon's algorithm
// Inputs:
// 1) the number of qubits in the input register N for the function f
// 2) a quantum operation which implements the oracle |x⟩|y⟩ -> |x⟩|y ⊕ f(x)⟩, where
// x is N-qubit input register, y is N-qubit answer register, and f is a function
// from N-bit strings into N-bit strings
//
// The function f is guaranteed to satisfy the following property:
// there exists some N-bit string s such that for all N-bit strings b and c (b != c)
// we have f(b) = f(c) if and only if b = c ⊕ s. In other words, f is a two-to-one function.
//
// An example of such function is bitwise right shift function from task 1.2;
// the bit string s for it is [0, ..., 0, 1].
//
// Output:
// Any bit string b such that Σᵢ bᵢ sᵢ = 0 modulo 2.
//
// Note that the whole algorithm will reconstruct the bit string s itself, but the quantum part of the
// algorithm will only find some vector orthogonal to the bit string s. The classical post-processing
// part is already implemented, so once you implement the quantum part, the tests will pass.
operation Simon_Algorithm (N : Int, Uf : ((Qubit[], Qubit[]) => Unit)) : Int[] {
// Declare an Int array in which the result will be stored;
// the variable has to be mutable to allow updating it.
mutable b = new Int[N];
// ...
return b;
}
}