Skip to content

Latest commit

 

History

History
174 lines (153 loc) · 18 KB

readme.md

File metadata and controls

174 lines (153 loc) · 18 KB

Problem:

Given a list of posts, compute the top 5 related posts for each post based on the number of shared tags.

Steps
  • Read the posts JSON file.
  • Iterate over the posts and populate a map containing: tag -> List<int>, with the int representing the post index of each post with that tag.
  • Iterate over the posts and for each post:
    • Create a map: PostIndex -> int to track the number of shared tags
    • For each tag, Iterate over the posts that have that tag
    • For each post, increment the shared tag count in the map.
  • Sort the related posts by the number of shared tags.
  • Write the top 5 related posts for each post to a new JSON file.

Run Benchmark

./run.sh go | rust | python | all

# windows (powershell)
./run.ps1 go | rust | python | all
# OR
pwsh ./run.ps1 go | rust | python | all

# Docker (check the dockerfile for available variables)
docker build -t databench .
# OR
docker pull ghcr.io/jinyus/databench:latest
# THEN
docker run -e TEST_NAME=all -it --rm databench
Rules

No:

  • FFI (including assembly inlining)
  • Unsafe code blocks
  • Custom benchmarking
  • Disabling runtime checks (bounds etc)
  • Specific hardware targeting
  • SIMD for single threaded solutions
  • Hardcoding number of posts
  • Lazy evaluation (Unless results are computed at runtime and timed)
  • Computation Caching

Must:

  • Support up to 100,000 posts
  • Support UTF8 strings
  • Parse json at runtime
  • Support up to 100 tags
  • Represent tags as strings
  • Be production ready
  • Use less than 8GB of memory

Updated Results from github workflow (raw data)

VM Specs ( AWS c7a.xlarge-4vCPU-8GB-RAM-Ubuntu 22.04 )
Language Time (5k posts) 20k posts 60k posts Total
Julia HO1 5.80 ms 20.00 ms 89.33 ms 115.13 ms
D (v2) $\textsf{\color{lightgreen}11.73 ms}$ $\textsf{\color{lightgreen}123.60 ms}$ $\textsf{\color{lightgreen}972.19 ms}$ 1.11 s
C++ 13.80 ms 170.67 ms 1.45 s 1.63 s
Rust 14.18 ms 193.88 ms 1.68 s 1.89 s
Zig 14.00 ms 195.67 ms 1.68 s 1.89 s
D 18.44 ms 245.60 ms 2.09 s 2.35 s
Go 16.87 ms 248.89 ms 2.15 s 2.42 s
Neat 19.21 ms 260.15 ms 2.14 s 2.42 s
Java (JIT) 25.60 ms 260.33 ms 2.20 s 2.48 s
C# (AOT) 18.81 ms 267.93 ms 2.35 s 2.63 s
C# (JIT) 19.10 ms 270.89 ms 2.34 s 2.63 s
Nim 19.39 ms 291.69 ms 2.52 s 2.84 s
F# (AOT) 24.78 ms 366.04 ms 3.23 s 3.62 s
Julia 27.37 ms 407.72 ms 3.62 s 4.05 s
Java (GraalVM) 28.10 ms 416.00 ms 3.63 s 4.07 s
Vlang 28.81 ms 429.55 ms 3.74 s 4.20 s
F# (JIT) 26.25 ms 410.77 ms 3.92 s 4.36 s
Swift 34.58 ms 496.38 ms 4.17 s 4.70 s
Haskell 36.30 ms 508.33 ms 4.42 s 4.96 s
Odin 34.53 ms 510.76 ms 4.47 s 5.02 s
Crystal 39.44 ms 582.76 ms 5.13 s 5.75 s
JS (Bun) 64.60 ms 763.33 ms 6.32 s 7.15 s
LuaJIT 63.53 ms 824.24 ms 6.72 s 7.61 s
Pypy 61.62 ms 748.57 ms 6.83 s 7.64 s
Dart VM 50.30 ms 969.67 ms 7.51 s 8.53 s
Common Lisp (SBCL) 130.00 ms 995.00 ms 8.37 s 9.49 s
Dart AOT 66.20 ms 1.02 s 8.97 s 10.05 s
JS (Deno) 92.30 ms 1.08 s 10.19 s 11.36 s
Ocaml 77.40 ms 1.22 s 10.14 s 11.43 s
JS (Node) 104.30 ms 1.32 s 12.39 s 13.81 s
Racket 114.77 ms 1.77 s 14.12 s 16.01 s
Typed Racket 117.18 ms 1.73 s 14.18 s 16.02 s
Lobster (C++) 123.76 ms 1.91 s 16.66 s 18.69 s
Scala Native 254.40 ms 3.14 s 25.70 s 29.10 s
Inko2 435.70 ms 6.67 s 58.94 s 66.05 s
LuaJIT (JIT OFF) 538.14 ms 8.47 s 66.93 s 75.94 s
Erlang 643.30 ms 10.46 s 94.95 s 106.06 s
Lua 827.92 ms 12.78 s 113.92 s 127.53 s
Python 1.20 s 18.93 s 169.05 s 189.18 s
Lobster (JIT) 1.35 s 20.78 s 195.33 s 217.46 s
Ruby 1.50 s 22.91 s 213.64 s 238.05 s
Numpy 216.51 ms OOM 3.27 s Infinity s

Multicore Results

Language Time (5k posts) 20k posts 60k posts Total
D Concurrent (v2) 5.83 ms $\textsf{\color{lightgreen}44.35 ms}$ $\textsf{\color{lightgreen}265.80 ms}$ 315.98 ms
C# Concurrent (JIT) 6.56 ms 47.71 ms 378.32 ms 432.59 ms
C++ Concurrent 5.00 ms 48.33 ms 390.00 ms 443.33 ms
C# Concurrent (AOT) 4.97 ms 56.80 ms 458.21 ms 519.98 ms
D Concurrent 7.41 ms 63.79 ms 465.82 ms 537.03 ms
Nim Concurrent $\textsf{\color{lightgreen}4.64 ms}$ 59.38 ms 497.93 ms 561.95 ms
Rust Concurrent 5.05 ms 67.47 ms 541.40 ms 613.93 ms
Go Concurrent 5.84 ms 77.61 ms 642.69 ms 726.14 ms
Julia Concurrent 5.89 ms 77.39 ms 660.25 ms 743.54 ms
F# Concurrent 7.50 ms 104.33 ms 904.33 ms 1.02 s
Swift Concurrent 10.86 ms 125.49 ms 1.01 s 1.15 s
F# Concurrent (AOT) 8.50 ms 128.33 ms 1.14 s 1.28 s
Java Concurrent (JIT) 66.60 ms 186.67 ms 1.16 s 1.41 s
Zig Concurrent 14.96 ms 190.59 ms 1.59 s 1.79 s
Java (GraalVM) Concurrent 12.40 ms 252.67 ms 1.84 s 2.11 s
Old Results with details (on my machine)
Language Processing Time Total (+ I/O) Details
Rust - 4.5s Initial
Rust v2 - 2.60s Replace std HashMap with fxHashMap by phazer99
Rust v3 - 1.28s Preallocate and reuse map and unstable sort by vdrmn and Darksonn
Rust v4 - 0.13s Use Post index as key instead of Pointer and Binary Heap by RB5009
Rust v5 38ms 52ms Rm hashing from loop and use vec[count] instead of map[index]count by RB5009
Rust v6 23ms 36ms Optimized Binary Heap Ops by scottlamb
Rust Rayon 9ms 22ms Parallelize by masmullin2000
Rust Rayon 8ms 22ms Remove comparison out of hot loop
Go - 1.5s Initial
Go v2 - 80ms Add rust optimizations
Go v3 56ms 70ms Use goccy/go-json
Go v3 34ms 55ms Use generic binaryheap by DrBlury
Go v4 26ms 50ms Replace binary heap with custom priority queue
Go v5 20ms 43ms Remove comparison out of hot loop
Go Con 10ms 33ms Go concurrency by tirprox and DrBlury
Go Con v2 5ms 29ms Use arena, use waitgroup, rm binheap by DrBlury
Python - 7.81s Initial
Python v2 1.35s 1.53s Add rust optimizations by dave-andersen
Numpy 0.57s 0.85s Numpy implementation by Copper280z
Crystal 50ms 96ms Inital w/ previous optimizations
Crystal v2 33ms 72ms Replace binary heap with custom priority queue
Odin 110ms 397ms Ported from golang code
Odin v2 104ms 404ms Remove comparison out of hot loop
Dart VM 125ms 530ms Ported from golang code
Dart bin 274ms 360ms Compiled executable
Vlang 339ms 560ms Ported from golang code
Zig 80ms 110ms Provided by akhildevelops

Footnotes

  1. Uses specialized datastructures meant for demonstration purposes: more

  2. Inko is currently in beta and optimizations haven't been applied. more