-
Notifications
You must be signed in to change notification settings - Fork 35
/
y8m_features.py
348 lines (305 loc) · 13.2 KB
/
y8m_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
'''
AAA lllllll lllllll iiii
A:::A l:::::l l:::::l i::::i
A:::::A l:::::l l:::::l iiii
A:::::::A l:::::l l:::::l
A:::::::::A l::::l l::::l iiiiiii eeeeeeeeeeee
A:::::A:::::A l::::l l::::l i:::::i ee::::::::::::ee
A:::::A A:::::A l::::l l::::l i::::i e::::::eeeee:::::ee
A:::::A A:::::A l::::l l::::l i::::i e::::::e e:::::e
A:::::A A:::::A l::::l l::::l i::::i e:::::::eeeee::::::e
A:::::AAAAAAAAA:::::A l::::l l::::l i::::i e:::::::::::::::::e
A:::::::::::::::::::::A l::::l l::::l i::::i e::::::eeeeeeeeeee
A:::::AAAAAAAAAAAAA:::::A l::::l l::::l i::::i e:::::::e
A:::::A A:::::A l::::::ll::::::li::::::ie::::::::e
A:::::A A:::::A l::::::ll::::::li::::::i e::::::::eeeeeeee
A:::::A A:::::A l::::::ll::::::li::::::i ee:::::::::::::e
AAAAAAA AAAAAAAlllllllllllllllliiiiiiii eeeeeeeeeeeeee
______ _ ___ ______ _____
| ___| | | / _ \ | ___ \_ _| _
| |_ ___ __ _| |_ _ _ _ __ ___ ___ / /_\ \| |_/ / | | (_)
| _/ _ \/ _` | __| | | | '__/ _ \/ __| | _ || __/ | |
| || __/ (_| | |_| |_| | | | __/\__ \ | | | || | _| |_ _
\_| \___|\__,_|\__|\__,_|_| \___||___/ \_| |_/\_| \___/ (_)
_ _ _ _
| | | (_) | |
| | | |_ __| | ___ ___
| | | | |/ _` |/ _ \/ _ \
\ \_/ / | (_| | __/ (_) |
\___/|_|\__,_|\___|\___/
Featurize folders of videos if the default_video_features = ['y8m_features']
To read more about the y8m embedding, check out https://research.google.com/youtube8m/
Note that this embedding is modified to include the y8m feature set along with audio
and text features.
'''
import os, sys, tarfile, numpy
from six.moves import urllib
import tensorflow as tf
from PIL import Image
import numpy
import cv2, os, random, json, sys, getpass, pickle, datetime, time, librosa, shutil, gensim, nltk
from nltk import word_tokenize
from nltk.classify import apply_features, SklearnClassifier, maxent
import speech_recognition as sr
from pydub import AudioSegment
from sklearn import preprocessing
from sklearn import svm
from sklearn import metrics
from textblob import TextBlob
from operator import itemgetter
from matplotlib import pyplot as plt
from PIL import Image
import skvideo.io
import skvideo.motion
import skvideo.measure
from moviepy.editor import VideoFileClip
from matplotlib import pyplot as plt
from pydub import AudioSegment
def prev_dir(directory):
g=directory.split('/')
# print(g)
lastdir=g[len(g)-1]
i1=directory.find(lastdir)
directory=directory[0:i1]
return directory
# import custom audioset directory
basedir=os.getcwd()
prevdir=prev_dir(basedir)
audioset_dir=prevdir+'audio_features'
sys.path.append(audioset_dir)
import audioset_features as af
print('imported audioset features!')
os.chdir(basedir)
#### to extract tesseract features
sys.path.append(prevdir+ '/image_features')
import tesseract_features as tff
os.chdir(basedir)
# import fast featurize
text_dir=prevdir+'text_features'
os.chdir(text_dir)
sys.path.append(text_dir)
import fast_features as ff
print('imported fast features!')
os.chdir(basedir)
INCEPTION_TF_GRAPH = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
YT8M_PCA_MAT = 'http://data.yt8m.org/yt8m_pca.tgz'
MODEL_DIR = os.path.join(os.getenv('HOME'), 'yt8m')
class YouTube8MFeatureExtractor(object):
"""Extracts YouTube8M features for RGB frames.
First time constructing this class will create directory `yt8m` inside your
home directory, and will download inception model (85 MB) and YouTube8M PCA
matrix (15 MB). If you want to use another directory, then pass it to argument
`model_dir` of constructor.
If the model_dir exist and contains the necessary files, then files will be
re-used without download.
Usage Example:
from PIL import Image
import numpy
# Instantiate extractor. Slow if called first time on your machine, as it
# needs to download 100 MB.
extractor = YouTube8MFeatureExtractor()
image_file = os.path.join(extractor._model_dir, 'cropped_panda.jpg')
im = numpy.array(Image.open(image_file))
features = extractor.extract_rgb_frame_features(im)
** Note: OpenCV reverses the order of channels (i.e. orders channels as BGR
instead of RGB). If you are using OpenCV, then you must do:
im = im[:, :, ::-1] # Reverses order on last (i.e. channel) dimension.
then call `extractor.extract_rgb_frame_features(im)`
"""
def __init__(self, model_dir=MODEL_DIR):
# Create MODEL_DIR if not created.
self._model_dir = model_dir
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# Load PCA Matrix.
download_path = self._maybe_download(YT8M_PCA_MAT)
pca_mean = os.path.join(self._model_dir, 'mean.npy')
if not os.path.exists(pca_mean):
tarfile.open(download_path, 'r:gz').extractall(model_dir)
self._load_pca()
# Load Inception Network
download_path = self._maybe_download(INCEPTION_TF_GRAPH)
inception_proto_file = os.path.join(self._model_dir,
'classify_image_graph_def.pb')
if not os.path.exists(inception_proto_file):
tarfile.open(download_path, 'r:gz').extractall(model_dir)
self._load_inception(inception_proto_file)
def extract_rgb_frame_features(self, frame_rgb, apply_pca=True):
"""Applies the YouTube8M feature extraction over an RGB frame.
This passes `frame_rgb` to inception3 model, extracting hidden layer
activations and passing it to the YouTube8M PCA transformation.
Args:
frame_rgb: numpy array of uint8 with shape (height, width, channels) where
channels must be 3 (RGB), and height and weight can be anything, as the
inception model will resize.
apply_pca: If not set, PCA transformation will be skipped.
Returns:
Output of inception from `frame_rgb` (2048-D) and optionally passed into
YouTube8M PCA transformation (1024-D).
"""
assert len(frame_rgb.shape) == 3
assert frame_rgb.shape[2] == 3 # 3 channels (R, G, B)
with self._inception_graph.as_default():
if apply_pca:
frame_features = self.session.run(
'pca_final_feature:0', feed_dict={'DecodeJpeg:0': frame_rgb})
else:
frame_features = self.session.run(
'pool_3/_reshape:0', feed_dict={'DecodeJpeg:0': frame_rgb})
frame_features = frame_features[0]
return frame_features
def apply_pca(self, frame_features):
"""Applies the YouTube8M PCA Transformation over `frame_features`.
Args:
frame_features: numpy array of floats, 2048 dimensional vector.
Returns:
1024 dimensional vector as a numpy array.
"""
# Subtract mean
feats = frame_features - self.pca_mean
# Multiply by eigenvectors.
feats = feats.reshape((1, 2048)).dot(self.pca_eigenvecs).reshape((1024,))
# Whiten
feats /= numpy.sqrt(self.pca_eigenvals + 1e-4)
return feats
def _maybe_download(self, url):
"""Downloads `url` if not in `_model_dir`."""
filename = os.path.basename(url)
download_path = os.path.join(self._model_dir, filename)
if os.path.exists(download_path):
return download_path
def _progress(count, block_size, total_size):
sys.stdout.write(
'\r>> Downloading %s %.1f%%' %
(filename, float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
urllib.request.urlretrieve(url, download_path, _progress)
statinfo = os.stat(download_path)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return download_path
def _load_inception(self, proto_file):
graph_def = tf.GraphDef.FromString(open(proto_file, 'rb').read())
self._inception_graph = tf.Graph()
with self._inception_graph.as_default():
_ = tf.import_graph_def(graph_def, name='')
self.session = tf.Session()
Frame_Features = self.session.graph.get_tensor_by_name(
'pool_3/_reshape:0')
Pca_Mean = tf.constant(value=self.pca_mean, dtype=tf.float32)
Pca_Eigenvecs = tf.constant(value=self.pca_eigenvecs, dtype=tf.float32)
Pca_Eigenvals = tf.constant(value=self.pca_eigenvals, dtype=tf.float32)
Feats = Frame_Features[0] - Pca_Mean
Feats = tf.reshape(
tf.matmul(tf.reshape(Feats, [1, 2048]), Pca_Eigenvecs), [
1024,
])
tf.divide(Feats, tf.sqrt(Pca_Eigenvals + 1e-4), name='pca_final_feature')
def _load_pca(self):
self.pca_mean = numpy.load(os.path.join(self._model_dir, 'mean.npy'))[:, 0]
self.pca_eigenvals = numpy.load(
os.path.join(self._model_dir, 'eigenvals.npy'))[:1024, 0]
self.pca_eigenvecs = numpy.load(
os.path.join(self._model_dir, 'eigenvecs.npy')).T[:, :1024]
def transcribe(wavfile):
r = sr.Recognizer()
# use wavfile as the audio source (must be .wav file)
with sr.AudioFile(wavfile) as source:
#extract audio data from the file
audio = r.record(source)
transcript=r.recognize_sphinx(audio)
print(transcript)
return transcript
# Instantiate extractor. Slow if called first time on your machine, as it
# needs to download 100 MB.
def y8m_featurize(videofile, process_dir, help_dir, fast_model):
now=os.getcwd()
# PREPROCESSING
#############################################
# metadata (should be .mp4)
clip = VideoFileClip(videofile)
duration = clip.duration
videodata=skvideo.io.vread(videofile)
frames, rows, cols, channels = videodata.shape
metadata=skvideo.io.ffprobe(videofile)
frame=videodata[0]
r,c,ch=frame.shape
try:
os.mkdir('output')
os.chdir('output')
outputdir=os.getcwd()
except:
shutil.rmtree('output')
os.mkdir('output')
os.chdir('output')
outputdir=os.getcwd()
#write all the images every 10 frames in the video
for i in range(0,len(videodata),25):
#row, col, channels
skvideo.io.vwrite("output"+str(i)+".png", videodata[i])
listdir=os.listdir()
(r,c,ch)=cv2.imread(listdir[0]).shape
img=numpy.zeros((r,c,ch))
iterations=0
#take first image as a background image
background=cv2.imread(listdir[1])
image_features=numpy.zeros(1024)
image_features2=numpy.zeros(63)
image_transcript=''
for i in range(len(listdir)):
if listdir[i][-4:]=='.png':
os.chdir(outputdir)
frame_new=cv2.imread(listdir[i])
print(os.getcwd())
print(listdir[i])
print(frame)
img=img+frame_new
iterations=iterations+1
# get features
extractor = YouTube8MFeatureExtractor(model_dir=help_dir)
im = numpy.array(Image.open(listdir[i]))
image_features_temp = extractor.extract_rgb_frame_features(im)
image_features=image_features+image_features_temp
ttranscript, tfeatures, tlabels = tff.tesseract_featurize(listdir[i])
image_transcript=image_transcript+ttranscript
image_features2=image_features2+tfeatures
#os.remove(listdir[i])
# averaged image features
image_features=(1/iterations)*image_features
image_features2=(1/iterations)*image_features2
# averaged image over background
img=(1/iterations)*img-background
skvideo.io.vwrite("output.png", img)
extractor=YouTube8MFeatureExtractor(model_dir=help_dir)
im = numpy.array(Image.open('output.png'))
avg_image_features = extractor.extract_rgb_frame_features(im)
os.remove('output.png')
os.chdir(now)
video_features=image_features+avg_image_features
video_labels=list()
for i in range(len(video_features)):
video_labels.append('Y8M_feature_%s'%(str(i+1)))
avg_image_labels2=list()
for i in range(len(tlabels)):
avg_image_labels2.append('avg_imgtranscript_'+tlabels[i])
# make wavfile from video file and get average AudioSet embedding features
wavfile = videofile[0:-4]+'.wav'
os.system('ffmpeg -i %s %s'%(videofile,wavfile))
audio_features, audio_labels = af.audioset_featurize(wavfile, audioset_dir, process_dir)
a_features=numpy.zeros(len(audio_features[0]))
for i in range(len(audio_features)):
a_features=a_features+audio_features[i]
# average all the audioset features
audio_features=(1/len(audio_features[0]))*a_features
audio_labels=list()
for i in range(len(audio_features)):
audio_labels.append('audioset_feature_%s'%(str(i+1)))
# extract text and get using FastText model
transcript = transcribe(wavfile)
text_features, text_labels = ff.fast_featurize(transcript, fast_model)
features=numpy.append(video_features,image_features2)
features=numpy.append(features, audio_features)
features=numpy.append(features,text_features)
labels=video_labels+avg_image_labels2+audio_labels+text_labels
os.remove(videofile[0:-4]+'.wav')
shutil.rmtree('output')
return features, labels, transcript, image_transcript