-
Notifications
You must be signed in to change notification settings - Fork 35
/
video_features.py
775 lines (685 loc) · 30.9 KB
/
video_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
'''
AAA lllllll lllllll iiii
A:::A l:::::l l:::::l i::::i
A:::::A l:::::l l:::::l iiii
A:::::::A l:::::l l:::::l
A:::::::::A l::::l l::::l iiiiiii eeeeeeeeeeee
A:::::A:::::A l::::l l::::l i:::::i ee::::::::::::ee
A:::::A A:::::A l::::l l::::l i::::i e::::::eeeee:::::ee
A:::::A A:::::A l::::l l::::l i::::i e::::::e e:::::e
A:::::A A:::::A l::::l l::::l i::::i e:::::::eeeee::::::e
A:::::AAAAAAAAA:::::A l::::l l::::l i::::i e:::::::::::::::::e
A:::::::::::::::::::::A l::::l l::::l i::::i e::::::eeeeeeeeeee
A:::::AAAAAAAAAAAAA:::::A l::::l l::::l i::::i e:::::::e
A:::::A A:::::A l::::::ll::::::li::::::ie::::::::e
A:::::A A:::::A l::::::ll::::::li::::::i e::::::::eeeeeeee
A:::::A A:::::A l::::::ll::::::li::::::i ee:::::::::::::e
AAAAAAA AAAAAAAlllllllllllllllliiiiiiii eeeeeeeeeeeeee
______ _ ___ ______ _____
| ___| | | / _ \ | ___ \_ _| _
| |_ ___ __ _| |_ _ _ _ __ ___ ___ / /_\ \| |_/ / | | (_)
| _/ _ \/ _` | __| | | | '__/ _ \/ __| | _ || __/ | |
| || __/ (_| | |_| |_| | | | __/\__ \ | | | || | _| |_ _
\_| \___|\__,_|\__|\__,_|_| \___||___/ \_| |_/\_| \___/ (_)
_ _ _ _
| | | (_) | |
| | | |_ __| | ___ ___
| | | | |/ _` |/ _ \/ _ \
\ \_/ / | (_| | __/ (_) |
\___/|_|\__,_|\___|\___/
Featurize folders of videos if the default_video_features = ['video_features']
Note that htis uses a variety of libraries and can have dependency issues if you
have used other Allie functions. This heavily relies on skvideo, opencv, and scikit-learn.
'''
import numpy as np
import cv2, os, random, json, sys, getpass, pickle, datetime, time, librosa, shutil, gensim, nltk
from nltk import word_tokenize
from nltk.classify import apply_features, SklearnClassifier, maxent
import speech_recognition as sr
from pydub import AudioSegment
from sklearn import preprocessing
from sklearn import svm
from sklearn import metrics
from textblob import TextBlob
from operator import itemgetter
from matplotlib import pyplot as plt
from PIL import Image
import skvideo.io
import skvideo.motion
import skvideo.measure
from moviepy.editor import VideoFileClip
from matplotlib import pyplot as plt
from pydub import AudioSegment
def prev_dir(directory):
g=directory.split('/')
# print(g)
lastdir=g[len(g)-1]
i1=directory.find(lastdir)
directory=directory[0:i1]
return directory
#### to extract tesseract features
curdir=os.getcwd()
import helpers.tesseract_features as tf
os.chdir(curdir)
# DEFINE HELPER FUNCTIONS
#############################################################
def convert(file):
clip = VideoFileClip(file)
duration = clip.duration
if duration < 30:
if file[-4:] in ['.mov','.avi','.flv','.wmv']:
filename=file[0:-4]+'.mp4'
os.system('ffmpeg -i %s -an %s'%(file,filename))
os.remove(file)
elif file[-4:] == '.mp4':
filename=file
else:
filename=file
os.remove(file)
else:
filename=file
os.remove(file)
return filename
def haar_featurize(cur_dir, haar_dir, img):
os.chdir(haar_dir)
# load image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# assumes all files of haarcascades are in current directory
one = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml')
one = one.detectMultiScale(gray, 1.3, 5)
one = len(one)
two = cv2.CascadeClassifier('haarcascade_eye.xml')
two = two.detectMultiScale(gray, 1.3, 5)
two = len(two)
three = cv2.CascadeClassifier('haarcascade_frontalcatface_extended.xml')
three = three.detectMultiScale(gray, 1.3, 5)
three = len(three)
four = cv2.CascadeClassifier('haarcascade_frontalcatface.xml')
four = four.detectMultiScale(gray, 1.3, 5)
four = len(four)
five = cv2.CascadeClassifier('haarcascade_frontalface_alt_tree.xml')
five = five.detectMultiScale(gray, 1.3, 5)
five = len(five)
six = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
six = six.detectMultiScale(gray, 1.3, 5)
six = len(six)
seven = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
seven = seven.detectMultiScale(gray, 1.3, 5)
seven = len(seven)
eight = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eight = eight.detectMultiScale(gray, 1.3, 5)
eight = len(eight)
nine = cv2.CascadeClassifier('haarcascade_fullbody.xml')
nine = nine.detectMultiScale(gray, 1.3, 5)
nine = len(nine)
ten = cv2.CascadeClassifier('haarcascade_lefteye_2splits.xml')
ten = ten.detectMultiScale(gray, 1.3, 5)
ten = len(ten)
eleven = cv2.CascadeClassifier('haarcascade_licence_plate_rus_16stages.xml')
eleven = eleven.detectMultiScale(gray, 1.3, 5)
eleven = len(eleven)
twelve = cv2.CascadeClassifier('haarcascade_lowerbody.xml')
twelve = twelve.detectMultiScale(gray, 1.3, 5)
twelve = len(twelve)
thirteen = cv2.CascadeClassifier('haarcascade_profileface.xml')
thirteen = thirteen.detectMultiScale(gray, 1.3, 5)
thirteen = len(thirteen)
fourteen = cv2.CascadeClassifier('haarcascade_righteye_2splits.xml')
fourteen = fourteen.detectMultiScale(gray, 1.3, 5)
fourteen = len(fourteen)
fifteen = cv2.CascadeClassifier('haarcascade_russian_plate_number.xml')
fifteen = fifteen.detectMultiScale(gray, 1.3, 5)
fifteen = len(fifteen)
sixteen = cv2.CascadeClassifier('haarcascade_smile.xml')
sixteen = sixteen.detectMultiScale(gray, 1.3, 5)
sixteen = len(sixteen)
seventeen = cv2.CascadeClassifier('haarcascade_upperbody.xml')
seventeen = seventeen.detectMultiScale(gray, 1.3, 5)
seventeen = len(seventeen)
features=np.array([one,two,three,four,
five,six,seven,eight,
nine,ten,eleven,twelve,
thirteen,fourteen,fifteen,sixteen,
seventeen])
labels=['haarcascade_eye_tree_eyeglasses','haarcascade_eye','haarcascade_frontalcatface_extended','haarcascade_frontalcatface',
'haarcascade_frontalface_alt_tree','haarcascade_frontalface_alt','haarcascade_frontalface_alt2','haarcascade_frontalface_default',
'haarcascade_fullbody','haarcascade_lefteye_2splits','haarcascade_licence_plate_rus_16stages','haarcascade_lowerbody',
'haarcascade_profileface','haarcascade_righteye_2splits','haarcascade_russian_plate_number','haarcascade_smile',
'haarcascade_upperbody']
os.chdir(cur_dir)
return features, labels
def image_featurize(cur_dir,haar_dir,file):
# initialize label array
labels=list()
# only featurize files that are .jpeg, .jpg, or .png (convert all to ping
if file[-5:]=='.jpeg':
filename=convert(file)
elif file[-4:]=='.jpg':
filename=convert(file)
elif file[-4:]=='.png':
filename=file
else:
filename=file
#only featurize .png files after conversion
if filename[-4:]=='.png':
# READ IMAGE
########################################################
img = cv2.imread(filename,1)
# CALCULATE BASIC FEATURES (rows, columns, pixels)
########################################################
#rows, columns, pixel number
rows=img.shape[1]
columns=img.shape[2]
pixels=img.size
basic_features=np.array([rows,columns,pixels])
labels=labels+['rows', 'columns', 'pixels']
# HISTOGRAM FEATURES (avg, stdev, min, max)
########################################################
#blue
blue_hist=cv2.calcHist([img],[0],None,[256],[0,256])
blue_mean=np.mean(blue_hist)
blue_std=np.std(blue_hist)
blue_min=np.amin(blue_hist)
blue_max=np.amax(blue_hist)
#green
green_hist=cv2.calcHist([img],[1],None,[256],[0,256])
green_mean=np.mean(green_hist)
green_std=np.std(green_hist)
green_min=np.amin(green_hist)
green_max=np.amax(green_hist)
#red
red_hist=cv2.calcHist([img],[2],None,[256],[0,256])
red_mean=np.mean(red_hist)
red_std=np.std(red_hist)
red_min=np.amin(red_hist)
red_max=np.amax(red_hist)
hist_features=[blue_mean,blue_std,blue_min,blue_max,
green_mean,green_std,green_min,green_max,
red_mean,red_std,red_min,red_max]
hist_labels=['blue_mean','blue_std','blue_min','blue_max',
'green_mean','green_std','green_min','green_max',
'red_mean','red_std','red_min','red_max']
hist_features=np.array(hist_features)
features=np.append(basic_features,hist_features)
labels=labels+hist_labels
# CALCULATE HAAR FEATURES
########################################################
haar_features, haar_labels=haar_featurize(cur_dir,haar_dir,img)
features=np.append(features,haar_features)
labels=labels+haar_labels
# EDGE FEATURES
########################################################
# SIFT algorithm (scale invariant) - 128 features
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
(kps, des) = sift.detectAndCompute(gray, None)
edges=des
edge_features=np.zeros(len(edges[0]))
for i in range(len(edges)):
edge_features=edge_features+edges[i]
edge_features=edge_features/(len(edges))
edge_features=np.array(edge_features)
edge_labels=list()
for i in range(len(edge_features)):
edge_labels.append('edge_feature_%s'%(str(i+1)))
features=np.append(features,edge_features)
labels=labels+edge_labels
else:
os.remove(file)
return features, labels
def featurize_audio(wavfile):
#initialize features
hop_length = 512
n_fft=2048
#load file
y, sr = librosa.load(wavfile)
#extract mfcc coefficients
mfcc = librosa.feature.mfcc(y=y, sr=sr, hop_length=hop_length, n_mfcc=13)
mfcc_delta = librosa.feature.delta(mfcc)
#extract mean, standard deviation, min, and max value in mfcc frame, do this across all mfccs
features=np.array([np.mean(mfcc[0]),np.std(mfcc[0]),np.amin(mfcc[0]),np.amax(mfcc[0]),
np.mean(mfcc[1]),np.std(mfcc[1]),np.amin(mfcc[1]),np.amax(mfcc[1]),
np.mean(mfcc[2]),np.std(mfcc[2]),np.amin(mfcc[2]),np.amax(mfcc[2]),
np.mean(mfcc[3]),np.std(mfcc[3]),np.amin(mfcc[3]),np.amax(mfcc[3]),
np.mean(mfcc[4]),np.std(mfcc[4]),np.amin(mfcc[4]),np.amax(mfcc[4]),
np.mean(mfcc[5]),np.std(mfcc[5]),np.amin(mfcc[5]),np.amax(mfcc[5]),
np.mean(mfcc[6]),np.std(mfcc[6]),np.amin(mfcc[6]),np.amax(mfcc[6]),
np.mean(mfcc[7]),np.std(mfcc[7]),np.amin(mfcc[7]),np.amax(mfcc[7]),
np.mean(mfcc[8]),np.std(mfcc[8]),np.amin(mfcc[8]),np.amax(mfcc[8]),
np.mean(mfcc[9]),np.std(mfcc[9]),np.amin(mfcc[9]),np.amax(mfcc[9]),
np.mean(mfcc[10]),np.std(mfcc[10]),np.amin(mfcc[10]),np.amax(mfcc[10]),
np.mean(mfcc[11]),np.std(mfcc[11]),np.amin(mfcc[11]),np.amax(mfcc[11]),
np.mean(mfcc[12]),np.std(mfcc[12]),np.amin(mfcc[12]),np.amax(mfcc[12]),
np.mean(mfcc_delta[0]),np.std(mfcc_delta[0]),np.amin(mfcc_delta[0]),np.amax(mfcc_delta[0]),
np.mean(mfcc_delta[1]),np.std(mfcc_delta[1]),np.amin(mfcc_delta[1]),np.amax(mfcc_delta[1]),
np.mean(mfcc_delta[2]),np.std(mfcc_delta[2]),np.amin(mfcc_delta[2]),np.amax(mfcc_delta[2]),
np.mean(mfcc_delta[3]),np.std(mfcc_delta[3]),np.amin(mfcc_delta[3]),np.amax(mfcc_delta[3]),
np.mean(mfcc_delta[4]),np.std(mfcc_delta[4]),np.amin(mfcc_delta[4]),np.amax(mfcc_delta[4]),
np.mean(mfcc_delta[5]),np.std(mfcc_delta[5]),np.amin(mfcc_delta[5]),np.amax(mfcc_delta[5]),
np.mean(mfcc_delta[6]),np.std(mfcc_delta[6]),np.amin(mfcc_delta[6]),np.amax(mfcc_delta[6]),
np.mean(mfcc_delta[7]),np.std(mfcc_delta[7]),np.amin(mfcc_delta[7]),np.amax(mfcc_delta[7]),
np.mean(mfcc_delta[8]),np.std(mfcc_delta[8]),np.amin(mfcc_delta[8]),np.amax(mfcc_delta[8]),
np.mean(mfcc_delta[9]),np.std(mfcc_delta[9]),np.amin(mfcc_delta[9]),np.amax(mfcc_delta[9]),
np.mean(mfcc_delta[10]),np.std(mfcc_delta[10]),np.amin(mfcc_delta[10]),np.amax(mfcc_delta[10]),
np.mean(mfcc_delta[11]),np.std(mfcc_delta[11]),np.amin(mfcc_delta[11]),np.amax(mfcc_delta[11]),
np.mean(mfcc_delta[12]),np.std(mfcc_delta[12]),np.amin(mfcc_delta[12]),np.amax(mfcc_delta[12])])
return features
def exportfile(newAudio,time1,time2,filename,i):
#Exports to a wav file in the current path.
newAudio2 = newAudio[time1:time2]
g=os.listdir()
if filename[0:-4]+'_'+str(i)+'.wav' in g:
filename2=str(i)+'_segment'+'.wav'
print('making %s'%(filename2))
newAudio2.export(filename2,format="wav")
else:
filename2=str(i)+'.wav'
print('making %s'%(filename2))
newAudio2.export(filename2, format="wav")
return filename2
def audio_time_features(filename):
#recommend >0.50 seconds for timesplit
timesplit=0.50
hop_length = 512
n_fft=2048
y, sr = librosa.load(filename)
duration=float(librosa.core.get_duration(y))
#Now splice an audio signal into individual elements of 100 ms and extract
#all these features per 100 ms
segnum=round(duration/timesplit)
deltat=duration/segnum
timesegment=list()
time=0
for i in range(segnum):
#milliseconds
timesegment.append(time)
time=time+deltat*1000
newAudio = AudioSegment.from_wav(filename)
filelist=list()
for i in range(len(timesegment)-1):
filename=exportfile(newAudio,timesegment[i],timesegment[i+1],filename,i)
filelist.append(filename)
featureslist=np.array([0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0])
#save 100 ms segments in current folder (delete them after)
for j in range(len(filelist)):
try:
features=featurize_audio(filelist[i])
featureslist=featureslist+features
os.remove(filelist[j])
except:
print('error splicing')
os.remove(filelist[j])
#now scale the featureslist array by the length to get mean in each category
features=featureslist/segnum
return features
def textfeatures(transcript):
#alphabetical features
a=transcript.count('a')
b=transcript.count('b')
c=transcript.count('c')
d=transcript.count('d')
e=transcript.count('e')
f=transcript.count('f')
g_=transcript.count('g')
h=transcript.count('h')
i=transcript.count('i')
j=transcript.count('j')
k=transcript.count('k')
l=transcript.count('l')
m=transcript.count('m')
n=transcript.count('n')
o=transcript.count('o')
p=transcript.count('p')
q=transcript.count('q')
r=transcript.count('r')
s=transcript.count('s')
t=transcript.count('t')
u=transcript.count('u')
v=transcript.count('v')
w=transcript.count('w')
x=transcript.count('x')
y=transcript.count('y')
z=transcript.count('z')
space=transcript.count(' ')
#numerical features and capital letters
num1=transcript.count('0')+transcript.count('1')+transcript.count('2')+transcript.count('3')+transcript.count('4')+transcript.count('5')+transcript.count('6')+transcript.count('7')+transcript.count('8')+transcript.count('9')
num2=transcript.count('zero')+transcript.count('one')+transcript.count('two')+transcript.count('three')+transcript.count('four')+transcript.count('five')+transcript.count('six')+transcript.count('seven')+transcript.count('eight')+transcript.count('nine')+transcript.count('ten')
number=num1+num2
capletter=sum(1 for c in transcript if c.isupper())
#part of speech
text=word_tokenize(transcript)
g=nltk.pos_tag(transcript)
cc=0
cd=0
dt=0
ex=0
in_=0
jj=0
jjr=0
jjs=0
ls=0
md=0
nn=0
nnp=0
nns=0
pdt=0
pos=0
prp=0
prp2=0
rb=0
rbr=0
rbs=0
rp=0
to=0
uh=0
vb=0
vbd=0
vbg=0
vbn=0
vbp=0
vbp=0
vbz=0
wdt=0
wp=0
wrb=0
for i in range(len(g)):
if g[i][1] == 'CC':
cc=cc+1
elif g[i][1] == 'CD':
cd=cd+1
elif g[i][1] == 'DT':
dt=dt+1
elif g[i][1] == 'EX':
ex=ex+1
elif g[i][1] == 'IN':
in_=in_+1
elif g[i][1] == 'JJ':
jj=jj+1
elif g[i][1] == 'JJR':
jjr=jjr+1
elif g[i][1] == 'JJS':
jjs=jjs+1
elif g[i][1] == 'LS':
ls=ls+1
elif g[i][1] == 'MD':
md=md+1
elif g[i][1] == 'NN':
nn=nn+1
elif g[i][1] == 'NNP':
nnp=nnp+1
elif g[i][1] == 'NNS':
nns=nns+1
elif g[i][1] == 'PDT':
pdt=pdt+1
elif g[i][1] == 'POS':
pos=pos+1
elif g[i][1] == 'PRP':
prp=prp+1
elif g[i][1] == 'PRP$':
prp2=prp2+1
elif g[i][1] == 'RB':
rb=rb+1
elif g[i][1] == 'RBR':
rbr=rbr+1
elif g[i][1] == 'RBS':
rbs=rbs+1
elif g[i][1] == 'RP':
rp=rp+1
elif g[i][1] == 'TO':
to=to+1
elif g[i][1] == 'UH':
uh=uh+1
elif g[i][1] == 'VB':
vb=vb+1
elif g[i][1] == 'VBD':
vbd=vbd+1
elif g[i][1] == 'VBG':
vbg=vbg+1
elif g[i][1] == 'VBN':
vbn=vbn+1
elif g[i][1] == 'VBP':
vbp=vbp+1
elif g[i][1] == 'VBZ':
vbz=vbz+1
elif g[i][1] == 'WDT':
wdt=wdt+1
elif g[i][1] == 'WP':
wp=wp+1
elif g[i][1] == 'WRB':
wrb=wrb+1
#sentiment
tblob=TextBlob(transcript)
polarity=float(tblob.sentiment[0])
subjectivity=float(tblob.sentiment[1])
#word repeats
words=transcript.split()
newlist=transcript.split()
repeat=0
for i in range(len(words)):
newlist.remove(words[i])
if words[i] in newlist:
repeat=repeat+1
features=np.array([a,b,c,d,
e,f,g_,h,
i,j,k,l,
m,n,o,p,
q,r,s,t,
u,v,w,x,
y,z,space,number,
capletter,cc,cd,dt,
ex,in_,jj,jjr,
jjs,ls,md,nn,
nnp,nns,pdt,pos,
prp,prp2,rbr,rbs,
rp,to,uh,vb,
vbd,vbg,vbn,vbp,
vbz,wdt,wp, wrb,polarity,subjectivity,repeat])
labels=['a','b','c','d',
'e','f','g_','h',
'i','j','k','l',
'm','n','o','p',
'q','r','s','t',
'u','v','w','x',
'y','z','space','number',
'capletter','cc','cd','dt',
'ex','in_','jj','jjr',
'jjs','ls','md','nn',
'nnp','nns','pdt','pos',
'prp','prp2','rbr','rbs',
'rp','to','uh','vb',
'vbd','vbg','vbn','vbp',
'vbz','wdt','wp', 'polarity','subjectivity','repeat']
return features, labels
def transcribe(wavfile):
try:
r = sr.Recognizer()
# use wavfile as the audio source (must be .wav file)
with sr.AudioFile(wavfile) as source:
#extract audio data from the file
audio = r.record(source)
transcript=r.recognize_sphinx(audio)
print(transcript)
except:
transcript=''
return transcript
# featurize only a random 20 second slice of the video (or 20 sec splices of videos)
def video_featurize(videofile, cur_dir,haar_dir):
now=os.getcwd()
# PREPROCESSING
#############################################
# metadata (should be .mp4)
clip = VideoFileClip(videofile)
duration = clip.duration
videodata=skvideo.io.vread(videofile)
frames, rows, cols, channels = videodata.shape
metadata=skvideo.io.ffprobe(videofile)
frame=videodata[0]
r,c,ch=frame.shape
try:
os.mkdir('output')
os.chdir('output')
outputdir=os.getcwd()
except:
shutil.rmtree('output')
os.mkdir('output')
os.chdir('output')
outputdir=os.getcwd()
#write all the images every 10 frames in the video
for i in range(0,len(videodata),25):
#row, col, channels
skvideo.io.vwrite("output"+str(i)+".png", videodata[i])
listdir=os.listdir()
(r,c,ch)=cv2.imread(listdir[0]).shape
img=np.zeros((r,c,ch))
iterations=0
#take first image as a background image
background=cv2.imread(listdir[1])
image_features=np.zeros(160)
image_features2=np.zeros(63)
image_transcript=''
for i in range(len(listdir)):
if listdir[i][-4:]=='.png':
os.chdir(outputdir)
frame_new=cv2.imread(listdir[i])
print(os.getcwd())
print(listdir[i])
print(frame)
img=img+frame_new
iterations=iterations+1
image_features_temp, image_labels = image_featurize(cur_dir,haar_dir,listdir[i])
os.chdir(outputdir)
ttranscript, tfeatures, tlabels = tf.tesseract_featurize(listdir[i])
image_transcript=image_transcript+ttranscript
image_features2=image_features2+tfeatures
image_features=image_features+image_features_temp
#os.remove(listdir[i])
# averaged image features
image_features=(1/iterations)*image_features
image_features2=(1/iterations)*image_features2
# averaged image over background
img=(1/iterations)*img-background
skvideo.io.vwrite("output.png", img)
avg_image_features, image_labels =image_featurize(cur_dir,haar_dir, "output.png")
# remove temp directory
os.chdir(now)
# make wavfile from video file
wavfile = videofile[0:-4]+'.wav'
os.system('ffmpeg -i %s %s'%(videofile,wavfile))
print('made wavfile in %s'%(str(os.getcwd())))
# FEATURIZATION
#############################################
# audio features and time features
labels=list()
audio_features=np.append(featurize_audio(wavfile),audio_time_features(wavfile))
labels=['mfcc_1_mean_20ms','mfcc_1_std_20ms', 'mfcc_1_min_20ms', 'mfcc_1_max_20ms',
'mfcc_2_mean_20ms','mfcc_2_std_20ms', 'mfcc_2_min_20ms', 'mfcc_2_max_20ms',
'mfcc_3_mean_20ms','mfcc_3_std_20ms', 'mfcc_3_min_20ms', 'mfcc_3_max_20ms',
'mfcc_4_mean_20ms','mfcc_4_std_20ms', 'mfcc_4_min_20ms', 'mfcc_4_max_20ms',
'mfcc_5_mean_20ms','mfcc_5_std_20ms', 'mfcc_5_min_20ms', 'mfcc_5_max_20ms',
'mfcc_6_mean_20ms','mfcc_6_std_20ms', 'mfcc_6_min_20ms', 'mfcc_6_max_20ms',
'mfcc_7_mean_20ms','mfcc_7_std_20ms', 'mfcc_7_min_20ms', 'mfcc_7_max_20ms',
'mfcc_8_mean_20ms','mfcc_8_std_20ms', 'mfcc_8_min_20ms', 'mfcc_8_max_20ms',
'mfcc_9_mean_20ms','mfcc_9_std_20ms', 'mfcc_9_min_20ms', 'mfcc_9_max_20ms',
'mfcc_10_mean_20ms','mfcc_10_std_20ms', 'mfcc_10_min_20ms', 'mfcc_10_max_20ms',
'mfcc_11_mean_20ms','mfcc_11_std_20ms', 'mfcc_11_min_20ms', 'mfcc_11_max_20ms',
'mfcc_12_mean_20ms','mfcc_12_std_20ms', 'mfcc_12_min_20ms', 'mfcc_12_max_20ms',
'mfcc_13_mean_20ms','mfcc_13_std_20ms', 'mfcc_13_min_20ms', 'mfcc_13_max_20ms',
'mfcc_1_delta_mean_20ms','mfcc_1_delta_std_20ms', 'mfcc_1_delta_min_20ms', 'mfcc_1_delta_max_20ms',
'mfcc_2_delta_mean_20ms','mfcc_2_delta_std_20ms', 'mfcc_2_delta_min_20ms', 'mfcc_2_delta_max_20ms',
'mfcc_3_delta_mean_20ms','mfcc_3_delta_std_20ms', 'mfcc_3_delta_min_20ms', 'mfcc_3_delta_max_20ms',
'mfcc_4_delta_mean_20ms','mfcc_4_delta_std_20ms', 'mfcc_4_delta_min_20ms', 'mfcc_4_delta_max_20ms',
'mfcc_5_delta_mean_20ms','mfcc_5_delta_std_20ms', 'mfcc_5_delta_min_20ms', 'mfcc_5_delta_max_20ms',
'mfcc_6_delta_mean_20ms','mfcc_6_delta_std_20ms', 'mfcc_6_delta_min_20ms', 'mfcc_6_delta_max_20ms',
'mfcc_7_delta_mean_20ms','mfcc_7_delta_std_20ms', 'mfcc_7_delta_min_20ms', 'mfcc_7_delta_max_20ms',
'mfcc_8_delta_mean_20ms','mfcc_8_delta_std_20ms', 'mfcc_8_delta_min_20ms', 'mfcc_8_delta_max_20ms',
'mfcc_9_delta_mean_20ms','mfcc_9_delta_std_20ms', 'mfcc_9_delta_min_20ms', 'mfcc_9_delta_max_20ms',
'mfcc_10_delta_mean_20ms','mfcc_10_delta_std_20ms', 'mfcc_10_delta_min_20ms', 'mfcc_10_delta_max_20ms',
'mfcc_11_delta_mean_20ms','mfcc_11_delta_std_20ms', 'mfcc_11_delta_min_20ms', 'mfcc_11_delta_max_20ms',
'mfcc_12_delta_mean_20ms','mfcc_12_delta_std_20ms', 'mfcc_12_delta_min_20ms', 'mfcc_12_delta_max_20ms',
'mfcc_13_delta_mean_20ms','mfcc_13_delta_std_20ms', 'mfcc_13_delta_min_20ms', 'mfcc_13_delta_max_20ms',
'mfcc_1_mean_500ms','mfcc_1_std_500ms', 'mfcc_1_min_500ms', 'mfcc_1_max_500ms',
'mfcc_2_mean_500ms','mfcc_2_std_500ms', 'mfcc_2_min_500ms', 'mfcc_2_max_500ms',
'mfcc_3_mean_500ms','mfcc_3_std_500ms', 'mfcc_3_min_500ms', 'mfcc_3_max_500ms',
'mfcc_4_mean_500ms','mfcc_4_std_500ms', 'mfcc_4_min_500ms', 'mfcc_4_max_500ms',
'mfcc_5_mean_500ms','mfcc_5_std_500ms', 'mfcc_5_min_500ms', 'mfcc_5_max_500ms',
'mfcc_6_mean_500ms','mfcc_6_std_500ms', 'mfcc_6_min_500ms', 'mfcc_6_max_500ms',
'mfcc_7_mean_500ms','mfcc_7_std_500ms', 'mfcc_7_min_500ms', 'mfcc_7_max_500ms',
'mfcc_8_mean_500ms','mfcc_8_std_500ms', 'mfcc_8_min_500ms', 'mfcc_8_max_500ms',
'mfcc_9_mean_500ms','mfcc_9_std_500ms', 'mfcc_9_min_500ms', 'mfcc_9_max_500ms',
'mfcc_10_mean_500ms','mfcc_10_std_500ms', 'mfcc_10_min_500ms', 'mfcc_10_max_500ms',
'mfcc_11_mean_500ms','mfcc_11_std_500ms', 'mfcc_11_min_500ms', 'mfcc_11_max_500ms',
'mfcc_12_mean_500ms','mfcc_12_std_500ms', 'mfcc_12_min_500ms', 'mfcc_12_max_500ms',
'mfcc_13_mean_500ms','mfcc_13_std_500ms', 'mfcc_13_min_500ms', 'mfcc_13_max_500ms',
'mfcc_1_delta_mean_500ms','mfcc_1_delta_std_500ms', 'mfcc_1_delta_min_500ms', 'mfcc_1_delta_max_500ms',
'mfcc_2_delta_mean_500ms','mfcc_2_delta_std_500ms', 'mfcc_2_delta_min_500ms', 'mfcc_2_delta_max_500ms',
'mfcc_3_delta_mean_500ms','mfcc_3_delta_std_500ms', 'mfcc_3_delta_min_500ms', 'mfcc_3_delta_max_500ms',
'mfcc_4_delta_mean_500ms','mfcc_4_delta_std_500ms', 'mfcc_4_delta_min_500ms', 'mfcc_4_delta_max_500ms',
'mfcc_5_delta_mean_500ms','mfcc_5_delta_std_500ms', 'mfcc_5_delta_min_500ms', 'mfcc_5_delta_max_500ms',
'mfcc_6_delta_mean_500ms','mfcc_6_delta_std_500ms', 'mfcc_6_delta_min_500ms', 'mfcc_6_delta_max_500ms',
'mfcc_7_delta_mean_500ms','mfcc_7_delta_std_500ms', 'mfcc_7_delta_min_500ms', 'mfcc_7_delta_max_500ms',
'mfcc_8_delta_mean_500ms','mfcc_8_delta_std_500ms', 'mfcc_8_delta_min_500ms', 'mfcc_8_delta_max_500ms',
'mfcc_9_delta_mean_500ms','mfcc_9_delta_std_500ms', 'mfcc_9_delta_min_500ms', 'mfcc_9_delta_max_500ms',
'mfcc_10_delta_mean_500ms','mfcc_10_delta_std_500ms', 'mfcc_10_delta_min_500ms', 'mfcc_10_delta_max_500ms',
'mfcc_11_delta_mean_500ms','mfcc_11_delta_std_500ms', 'mfcc_11_delta_min_500ms', 'mfcc_11_delta_max_500ms',
'mfcc_12_delta_mean_500ms','mfcc_12_delta_std_500ms', 'mfcc_12_delta_min_500ms', 'mfcc_12_delta_max_500ms',
'mfcc_13_delta_mean_500ms','mfcc_13_delta_std_500ms', 'mfcc_13_delta_min_500ms', 'mfcc_13_delta_max_500ms']
# text features
transcript = transcribe(wavfile)
text_features, text_labels =textfeatures(transcript)
labels=labels+text_labels
# video features
video_features=np.append(image_features, avg_image_features)
avg_image_labels=list()
for i in range(len(image_labels)):
avg_image_labels.append('avg_'+image_labels[i])
avg_image_labels2=list()
for i in range(len(tlabels)):
avg_image_labels2.append('avg_imgtranscript_'+tlabels[i])
video_labels=image_labels + avg_image_labels + avg_image_labels2
labels=labels+video_labels
# other features
other_features = [frames,duration]
other_labels = ['frames', 'duration']
labels=labels+other_labels
# append all the features together
features = np.append(audio_features, text_features)
features = np.append(features, image_features)
features = np.append(features, image_features2)
features = np.append(features, video_features)
features = np.append(features, other_features)
# remove all temp files
try:
os.remove(wavfile)
except:
pass
try:
shutil.rmtree('output')
except:
pass
os.chdir(cur_dir)
return features, labels, transcript, image_transcript