This repository contains the implementation code for our NeurIPS 2024 paper Decoupled Kullback-Leibler (DKL) Divergence Loss, arXiv.
By 2023/05/20, with IKL loss, we achieve new state-of-the-art adversarial robustness under settings that with/without augmentation strategies on auto-attack.
# | Method | Model | Natural Acc | Robust Acc (AutoAttack) | link | log |
---|---|---|---|---|---|---|
1 | DAJAT | WRN-34-10 | 68.74 | 31.30 | - | - |
2 | IKL-AT | WRN-34-10 | 65.93 | 32.52 | model | log |
# | Method | Model | Natural Acc | Robust Acc (AutoAttack) | link | log |
---|---|---|---|---|---|---|
1 | AWP | WRN-34-10 | 60.38 | 28.86 | - | - |
2 | LBGAT | WRN-34-10 | 62.31 | 29.33 | - | - |
3 | LAS-AT | WRN-34-10 | 62.99 | 30.77 | - | - |
4 | ACAT | WRN-34-10 | 65.75 | 30.23 | - | - |
5 | IKL-AT | WRN-34-10 | 66.51 | 31.43 | model | log |
6 | IKL-AT | WRN-34-10 | 65.76 | 31.91 | model | log |
# | Method | Model | Natural Acc | Robust Acc (AutoAttack) | link | log |
---|---|---|---|---|---|---|
1 | Wang et al. (better diffusion models) 1M | WRN-28-10 | 68.06 | 35.65 | - | - |
2 | Wang et al. (better diffusion models) 50M | WRN-28-10 | 72.58 | 38.83 | - | - |
3 | IKL-AT 1M | WRN-28-10 | 68.99 | 35.89 | - | - |
4 | IKL-AT 50M | WRN-28-10 | 73.85 | 39.18 | model | log |
# | Method | Model | Natural Acc | Robust Acc (AutoAttack) | link | log |
---|---|---|---|---|---|---|
1 | AWP | WRN-34-10 | 85.36 | 56.17 | - | - |
2 | LBGAT | WRN-34-20 | 88.70 | 53.57 | - | - |
3 | LAS-AT | WRN-34-10 | 87.74 | 55.52 | - | - |
4 | ACAT | WRN-34-10 | 82.41 | 55.36 | - | - |
5 | IKL-AT | WRN-34-10 | 85.31 | 57.13 | model | log |
# | Method | Model | Natural Acc | Robust Acc (AutoAttack) | link | log |
---|---|---|---|---|---|---|
1 | Wang et al. (better diffusion models) 1M | WRN-28-10 | 91.12 | 63.35 | - | - |
2 | Wang et al. (better diffusion models) 20M | WRN-28-10 | 92.44 | 67.31 | - | - |
3 | IKL-AT 1M | WRN-28-10 | 90.75 | 63.54 | - | - |
4 | IKL-AT 20M | WRN-28-10 | 92.16 | 67.75 | model | log |
More training scripts will be provided soon to reproduce our results on knowledge distillation and adversarial training tasks.
For the adversarial training task:
cd Adv-training-dkl
bash sh/train_dkl_cifar100.sh
bash sh/train_dkl_cifar100_autoaug.sh
bash sh/train_dkl_cifar10.sh
before running the evaluation with auto-attack, please download the pre-trained models.
cd Adv-training-dkl/auto_attacks
bash sh/eval.sh
If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!
If you find this code or idea useful, please consider citing our related work:
@article{cui2023decoupled,
title={Decoupled Kullback-Leibler Divergence Loss},
author={Cui, Jiequan and Tian, Zhuotao and Zhong, Zhisheng and Qi, Xiaojuan and Yu, Bei and Zhang, Hanwang},
journal={arXiv preprint arXiv:2305.13948},
year={2023}
}
@inproceedings{cui2021learnable,
title={Learnable boundary guided adversarial training},
author={Cui, Jiequan and Liu, Shu and Wang, Liwei and Jia, Jiaya},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={15721--15730},
year={2021}
}