-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclient.py
306 lines (254 loc) · 14.7 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import torch
from torch import nn
import numpy as np
import pickle
import torch.nn.functional as F
from torch.utils.data import DataLoader
from copy import deepcopy
from datetime import datetime
import socket
from utils.communication_utils import send, recv
from utils.general_utils import set_seed
from tqdm import tqdm
from utils.evaluation import calculate_SLC_metrics, display_results
from utils.general_utils import prepare_client_weights, convert_model_key_to_idx
from utils.build_model import build_model
EPS = 1e-7
class ClientCluster():
def __init__(self, port):
try:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 80))
self.ip = s.getsockname()[0]
finally:
s.close()
self.port = port
self.server_ip = None
self.clients = {}
print('address:', (self.ip, self.port))
def register_task(self, args, server_args, global_keys):
self.global_keys = global_keys
self.global_key_to_idx = {global_k: i for i, global_k in enumerate(self.global_keys)}
args.task = server_args.task
args.total_clients = server_args.total_clients
args.n_large = server_args.n_large
args.distill = server_args.distill
args.classifier_name = server_args.classifier_name
self.n_class = server_args.n_class
args.finetune_epochs = server_args.finetune_epochs
if server_args.task.startswith('cifar'):
from utils.datasets.load_cifar import load_cifar
trainData, valData, testData = load_cifar(server_args.task, os.path.join(args.data_dir, server_args.task), server_args.data_shares, server_args.alpha, server_args.n_large)
collate_fn = None
elif server_args.task == 'mnist':
valData = [None] * server_args.total_clients
from utils.datasets.load_mnist import load_mnist
trainData, testData = load_mnist(os.path.join(args.data_dir, server_args.task), server_args.data_shares, server_args.alpha, server_args.n_large)
collate_fn = None
elif server_args.task == 'mnli':
valData = [None] * server_args.total_clients
from utils.datasets.load_mnli import load_mnli, collate_fn
trainData, testData = load_mnli(os.path.join(args.data_dir, server_args.task, 'original'), server_args.data_shares, server_args.alpha, server_args.n_large)
collate_fn = collate_fn
else:
raise ValueError('Wrong dataset.')
return trainData, valData, testData, collate_fn
def run(self, args):
self.device = args.device
# waiting for server to send request
try:
soc = socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM)
soc.bind((self.ip, self.port))
soc.listen(1)
print('Start Listening...')
while True:
try:
new_socket, source_addr = soc.accept()
new_socket.settimeout(args.timeout)
if self.server_ip is not None and source_addr[0] != self.server_ip:
new_socket.close()
print(f'\033[31mReceive Unexpected Connection from {source_addr}. Connection Close.\033[0m')
print(f'Receive connection from {source_addr}')
# receive request
msg, status = recv(new_socket, args.buffer_size, recv_timeout=60)
if status == 1:
print(f"Receive {msg['subject'].upper()} message from {source_addr}")
if isinstance(msg, dict):
if msg['subject'] == 'register':
self.server_ip = source_addr[0]
trainData, valData, testData, collate_fn = self.register_task(args, msg['data']['args'], msg['data']['global_keys'])
client_features = {}
for cid in msg['data']['ids']:
self.clients[cid] = Client(args, msg['data']['args'], cid, trainData[cid], valData[cid], testData[cid], collate_fn)
client_features[cid] = self.clients[cid].class_distribution
data_byte = pickle.dumps({"subject": "register", "data": {"client_features": client_features}})
print("Registered. Reply to the Server.")
send(new_socket, data_byte, args.buffer_size)
del data_byte
elif msg['subject'] == 'train_and_eval':
response_data = {}
# train
for cid in msg['data']['train']['ids']:
response_data[cid] = {"model": [], "score": None}
for i, model_name in enumerate(self.clients[cid].model_names):
recv_weights = {self.global_keys[k_idx]: p for k_idx, p in msg['data']['train']['model'][cid][i].items()}
new_weights = prepare_client_weights(self.clients[cid].models[i], model_name, recv_weights)
# only pass teacher models to large device
updated_weights, test_scores = self.clients[cid].local_update(args, i, msg['data']['round'], new_weights)
response_data[cid]["model"].append(convert_model_key_to_idx(self.global_key_to_idx, model_name, updated_weights))
display_results(test_scores, self.clients[cid].metrics)
if i == 0:
response_data[cid]["score"] = test_scores
# eval
for cid in msg['data']['eval']['ids']:
# don't update client model
model = deepcopy(self.clients[cid].models[0])
recv_weights = {self.global_keys[k_idx]: p for k_idx, p in msg['data']['eval']['model'][cid][0].items()}
new_weights = prepare_client_weights(self.clients[cid].models[0], self.clients[cid].model_names[0], recv_weights)
missing_keys, unexpected_keys = model.load_state_dict(new_weights, strict=False)
if len(missing_keys) or len(unexpected_keys):
print('Warning: missing %i missing_keys, %i unexpected_keys.' % (len(missing_keys), len(unexpected_keys)))
model = self.clients[cid].fine_tune(args, model)
test_scores, test_loss = self.clients[cid].evaluate(args, model)
print(f"Evaluated Client %i. Test loss = %.4f" % (cid, test_loss))
display_results(test_scores, self.clients[cid].metrics)
if cid in response_data:
response_data[cid]["score"] = test_scores
else:
response_data[cid] = {"score": test_scores}
# reply request
data_byte = pickle.dumps({"subject": "train_and_eval", "data": response_data})
print(f"Trained and evaluated. Send {len(data_byte)*1e-9} Gb to the Server.")
new_socket.settimeout(3600)
send(new_socket, data_byte, args.buffer_size)
del data_byte
finally:
new_socket.close()
print(f'Close Connection with {source_addr}')
finally:
soc.close()
class Client():
def __init__(self, args, server_args, id, trainData, valData, testData, collate_fn):
self.id = id
args.epochs = server_args.epochs
args.buffer_size = server_args.buffer_size
set_seed(server_args.seed)
self.task = server_args.task
self.is_large = id >= (server_args.total_clients - server_args.n_large)
self.classifier_name = server_args.classifier_name
self.device = args.device
self.metrics = server_args.metrics
self.trainData = trainData
self.valData = valData
self.testData = testData
self.collate_fn = collate_fn
self.n_class = server_args.n_class
self.distill = server_args.distill
# client features
class_distribution = np.zeros(self.n_class)
train_loader = DataLoader(self.trainData, batch_size=args.batch_size, shuffle=True, collate_fn=self.collate_fn, num_workers=4)
for _, labels in train_loader:
for cls in range(self.n_class):
class_distribution[cls] += labels.numpy().tolist().count(cls)
self.class_distribution = class_distribution / np.sum(class_distribution)
print(f'Client {id} class distribution:', self.class_distribution)
self.model_names = server_args.client_model_names[id]
self.models = []
for model_name in self.model_names:
model = build_model(model_name, self.task, self.n_class, self.device)
if self.task == 'mnli':
model.train_adapter("mnli")
self.models.append(model)
self.alpha = 0.01
self.prev_grads = [0. for _ in self.model_names]
print(f'Client {self.id} n_train: {len(self.trainData)}, n_class: {self.n_class}')
def train_one_batch(self, model, model_idx, sample, label, optimizer):
model.train()
criterion = nn.CrossEntropyLoss()
kl_criterion = nn.KLDivLoss(reduction="batchmean")
label = label.to(self.device, dtype=torch.long)
if len(label.shape) > 1:
label = torch.argmax(label, dim=-1)
optimizer.zero_grad()
feat, out = self.model_fit(model.to(self.device), sample, return_emb=True)
loss = criterion(out, label)
# distillation
if self.distill and len(self.models) > 1:
if model_idx > 0:
teacher = deepcopy(self.models[0].to(self.device))
teacher.eval()
t_feat, t_out = self.model_fit(teacher, sample, return_emb=True)
logits_loss = criterion(out, t_out.softmax(dim=1))
loss += logits_loss
if t_feat.shape == feat.shape:
feature_loss = kl_criterion(F.log_softmax(feat, dim=1), F.softmax(t_feat, dim=1))
loss += feature_loss
loss.backward(retain_graph=True)
optimizer.step()
return loss.item()
def evaluate(self, args, model):
data_loader = DataLoader(self.testData, batch_size=args.batch_size, shuffle=False, collate_fn=self.collate_fn, num_workers=1)
criterion = nn.CrossEntropyLoss()
y_pred = []
y_true = []
model.eval()
avg_loss = []
with torch.no_grad():
for sample, label in data_loader:
label = label.to(self.device, dtype=torch.float)
if len(label.shape) == 1:
label = F.one_hot(label.to(torch.long), num_classes=self.n_class)
out = self.model_fit(model.to(self.device), sample)
avg_loss.append(criterion(out, torch.argmax(label, dim=-1)).item())
out = torch.softmax(out, dim=-1)
y_pred.extend(out.cpu().numpy())
y_true.extend(label.cpu().numpy())
y_true = np.array(y_true)
y_pred = np.array(y_pred)
test_scores = calculate_SLC_metrics(y_true, y_pred)
return test_scores, np.mean(avg_loss)
def local_update(self, args, model_idx, round, model_weights):
missing_keys, unexpected_keys = self.models[model_idx].load_state_dict(model_weights, strict=False)
if len(missing_keys) or len(unexpected_keys):
print('Warning: missing %i missing_keys, %i unexpected_keys.' % (len(missing_keys), len(unexpected_keys)))
self.recv_params = torch.cat([p.reshape(-1) for p in self.models[model_idx].to(self.device).parameters()])
train_loader = DataLoader(self.trainData, batch_size=args.batch_size, shuffle=True, collate_fn=self.collate_fn, num_workers=4)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, self.models[model_idx].parameters()), lr=args.lr)
for e in range(args.epochs):
start_time = datetime.now()
for sample, label in tqdm(train_loader, total=len(train_loader)):
self.train_one_batch(self.models[model_idx], model_idx, sample, label, optimizer)
end_time = datetime.now()
duration = (end_time - start_time).seconds / 60.
print('[TRAIN] Client %i, Epoch %i, time=%.3fmins' % (self.id, round * args.epochs + e, duration))
# client testing
if e == args.finetune_epochs - 1: # test after fine_tune_epoch
test_scores, _ = self.evaluate(args, self.models[model_idx])
curr_params = torch.cat([p.reshape(-1) for p in self.models[model_idx].parameters()])
self.prev_grads[model_idx] -= self.alpha * (curr_params.to(self.device) - self.recv_params.to(self.device))
updated_weights = {k: p for k, p in self.models[model_idx].state_dict().items()}
return updated_weights, test_scores
# train model one round, without changing self.model value
def fine_tune(self, args, model):
self.recv_params = torch.cat([p.reshape(-1) for p in model.to(self.device).parameters()])
train_loader = DataLoader(self.trainData, batch_size=args.batch_size, shuffle=True, collate_fn=self.collate_fn, num_workers=4)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
model.train()
for e in range(args.finetune_epochs):
start_time = datetime.now()
for sample, label in tqdm(train_loader, total=len(train_loader)):
self.train_one_batch(model, 0, sample, label, optimizer)
end_time = datetime.now()
duration = (end_time - start_time).seconds / 60.
print('[FINE-TUNE] Client %i, time=%.3fmins' % (self.id, duration))
return model
def model_fit(self, model, sample, return_emb=False):
if self.task == 'mnli':
output = model(sample[0].to(self.device), token_type_ids=sample[1].to(self.device), attention_mask=sample[2].to(self.device), output_hidden_states=True)
if return_emb:
return output.hidden_states[-1][:, 0], output.logits
else:
return output.logits
else:
return model(sample.to(self.device), return_emb=return_emb)