-
Notifications
You must be signed in to change notification settings - Fork 63
/
preprocess.py
523 lines (454 loc) · 20.4 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from functools import partial
from itertools import chain
from typing import (Any, Callable, Dict, List, Literal, Optional, Sequence,
Tuple)
from numpy.typing import NDArray
from PIL import Image
from PIL.Image import Image as ImageObject
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
from transformers.image_processing_utils import BaseImageProcessor
from transformers.tokenization_utils import PreTrainedTokenizer
from llamatuner.configs import DataArguments
from llamatuner.data.template import Template
from llamatuner.data.utils import Role
from llamatuner.utils.constants import IGNORE_INDEX, IMAGE_TOKEN
from llamatuner.utils.logger_utils import get_logger
logger = get_logger('llamatuner')
def _preprocess_visual_inputs(images: Sequence[ImageObject],
processor: ProcessorMixin) -> 'NDArray':
# process visual inputs (currently only supports a single image)
image_processor: BaseImageProcessor = getattr(processor, 'image_processor')
image = (images[0] if len(images) != 0 else Image.new(
'RGB', (100, 100), (255, 255, 255)))
return image_processor(image, return_tensors='pt')['pixel_values'][0]
def preprocess_pretrain_dataset(
examples: Dict[str, List[Any]],
tokenizer: PreTrainedTokenizer,
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
text_examples = [
messages[0]['content'] + tokenizer.eos_token
for messages in examples['prompt']
]
if not data_args.packing:
if data_args.template == 'gemma':
text_examples = [
tokenizer.bos_token + example for example in text_examples
]
result = tokenizer(text_examples,
add_special_tokens=False,
max_length=data_args.cutoff_len)
else:
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {
k: list(chain(*tokenized_examples[k]))
for k in tokenized_examples.keys()
}
total_length = len(concatenated_examples[list(
concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
total_length = (total_length // block_size) * block_size
result = {
k:
[t[i:i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
if data_args.template == 'gemma':
for i in range(len(result['input_ids'])):
result['input_ids'][i][0] = tokenizer.bos_token_id
return result
def preprocess_supervised_dataset(
examples: Dict[str, List[Any]],
template: Template,
tokenizer: PreTrainedTokenizer,
processor: Optional[ProcessorMixin],
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
model_inputs = {'input_ids': [], 'attention_mask': [], 'labels': []}
if processor is not None:
model_inputs['pixel_values'] = []
preprocess_visual_inputs = partial(_preprocess_visual_inputs,
processor=processor)
for i in range(len(examples['prompt'])):
if len(examples['prompt'][i]) % 2 != 1 or len(
examples['response'][i]) != 1:
logger.warning(
'Dropped invalid example: {}'.format(examples['prompt'][i] +
examples['response'][i]))
continue
if processor is not None and not hasattr(processor,
'image_seq_length'):
examples['prompt'][i][0]['content'] = (
IMAGE_TOKEN + examples['prompt'][i][0]['content'])
messages = examples['prompt'][i] + examples['response'][i]
input_ids, labels = [], []
if processor is not None and hasattr(processor, 'image_seq_length'):
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
input_ids += [image_token_id] * getattr(processor,
'image_seq_length')
labels += [IGNORE_INDEX] * getattr(processor, 'image_seq_length')
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(
tokenizer,
messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id
] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
model_inputs['input_ids'].append(input_ids)
model_inputs['attention_mask'].append([1] * len(input_ids))
model_inputs['labels'].append(labels)
if processor is not None:
model_inputs['pixel_values'].append(
preprocess_visual_inputs(examples['images'][i]))
return model_inputs
def preprocess_packed_supervised_dataset(
examples: Dict[str, List[Any]],
template: Template,
tokenizer: PreTrainedTokenizer,
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {'input_ids': [], 'attention_mask': [], 'labels': []}
input_ids, labels = [], []
for i in range(len(examples['prompt'])):
if len(examples['prompt'][i]) % 2 != 1 or len(
examples['response'][i]) != 1:
logger.warning(
'Dropped invalid example: {}'.format(examples['prompt'][i] +
examples['response'][i]))
continue
messages = examples['prompt'][i] + examples['response'][i]
for source_ids, target_ids in template.encode_multiturn(
tokenizer, messages, examples['system'][i],
examples['tools'][i]):
if data_args.train_on_prompt:
source_mask = source_ids
elif len(input_ids) != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id
] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
total_length = len(input_ids)
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
if not all(label == IGNORE_INDEX
for label in labels[i:i + block_size]):
model_inputs['input_ids'].append(input_ids[i:i + block_size])
model_inputs['attention_mask'].append([1] * block_size)
model_inputs['labels'].append(labels[i:i + block_size])
return model_inputs
def preprocess_unsupervised_dataset(
examples: Dict[str, List[Any]],
template: Template,
tokenizer: PreTrainedTokenizer,
processor: Optional[ProcessorMixin],
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {'input_ids': [], 'attention_mask': [], 'labels': []}
if processor is not None:
model_inputs['pixel_values'] = []
preprocess_visual_inputs = partial(_preprocess_visual_inputs,
processor=processor)
for i in range(len(examples['prompt'])):
if len(examples['prompt'][i]) % 2 != 1:
logger.warning(
'Dropped invalid example: {}'.format(examples['prompt'][i] +
examples['response'][i]))
continue
if processor is not None and not hasattr(
processor, 'image_seq_length'): # llava case
examples['prompt'][i][0]['content'] = (
IMAGE_TOKEN + examples['prompt'][i][0]['content'])
if len(examples['response'][i]) == 1:
messages = examples['prompt'][i] + examples['response'][i]
else:
messages = examples['prompt'][i] + [{
'role': Role.ASSISTANT.value,
'content': ''
}]
input_ids, labels = template.encode_oneturn(
tokenizer,
messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
if processor is not None and hasattr(
processor, 'image_seq_length'): # paligemma case
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
input_ids = [image_token_id] * getattr(
processor, 'image_seq_length') + input_ids
model_inputs['input_ids'].append(input_ids)
model_inputs['attention_mask'].append([1] * len(input_ids))
model_inputs['labels'].append(labels)
if processor is not None:
model_inputs['pixel_values'].append(
preprocess_visual_inputs(examples['images'][i]))
return model_inputs
def preprocess_pairwise_dataset(
examples: Dict[str, List[Any]],
template: Template,
tokenizer: PreTrainedTokenizer,
processor: Optional[ProcessorMixin],
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {'prompt_ids': [], 'chosen_ids': [], 'rejected_ids': []}
if processor is not None:
model_inputs['pixel_values'] = []
preprocess_visual_inputs = partial(_preprocess_visual_inputs,
processor=processor)
for i in range(len(examples['prompt'])):
if len(examples['prompt'][i]) % 2 != 1 or len(
examples['response'][i]) < 2:
logger.warning(
'Dropped invalid example: {}'.format(examples['prompt'][i] +
examples['response'][i]))
continue
if processor is not None and not hasattr(
processor, 'image_seq_length'): # llava case
examples['prompt'][i][0]['content'] = (
IMAGE_TOKEN + examples['prompt'][i][0]['content'])
chosen_messages = examples['prompt'][i] + [examples['response'][i][0]]
rejected_messages = examples['prompt'][i] + [
examples['response'][i][1]
]
prompt_ids, chosen_ids = template.encode_oneturn(
tokenizer,
chosen_messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
_, rejected_ids = template.encode_oneturn(
tokenizer,
rejected_messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(
processor, 'image_seq_length'): # paligemma case
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
prompt_ids = [image_token_id] * getattr(
processor, 'image_seq_length') + prompt_ids
model_inputs['prompt_ids'].append(prompt_ids)
model_inputs['chosen_ids'].append(chosen_ids)
model_inputs['rejected_ids'].append(rejected_ids)
if processor is not None:
model_inputs['pixel_values'].append(
preprocess_visual_inputs(examples['images'][i]))
return model_inputs
def preprocess_kto_dataset(
examples: Dict[str, List[Any]],
template: Template,
tokenizer: PreTrainedTokenizer,
processor: Optional[ProcessorMixin],
data_args: DataArguments,
) -> Dict[str, List[List[int]]]:
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
kl_response = examples['response'][::-1]
model_inputs = {
'input_ids': [],
'attention_mask': [],
'labels': [],
'kl_input_ids': [],
'kl_attention_mask': [],
'kl_labels': [],
'kto_tags': [],
}
if processor is not None:
model_inputs['pixel_values'] = []
preprocess_visual_inputs = partial(_preprocess_visual_inputs,
processor=processor)
for i in range(len(examples['prompt'])):
if len(examples['prompt'][i]) % 2 != 1 or len(
examples['response'][i]) < 2:
logger.warning(
'Dropped invalid example: {}'.format(examples['prompt'][i] +
examples['response'][i]))
continue
if processor is not None and not hasattr(
processor, 'image_seq_length'): # llava case
examples['prompt'][i][0]['content'] = (
IMAGE_TOKEN + examples['prompt'][i][0]['content'])
if examples['response'][i][0]['content']: # desired example
kto_tag = True
messages = examples['prompt'][i] + [examples['response'][i][0]]
else: # undesired example
kto_tag = False
messages = examples['prompt'][i] + [examples['response'][i][1]]
if kl_response[i][0]['content']:
kl_messages = examples['prompt'][i] + [kl_response[i][0]]
else:
kl_messages = examples['prompt'][i] + [kl_response[i][1]]
prompt_ids, response_ids = template.encode_oneturn(
tokenizer,
messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
_, kl_response_ids = template.encode_oneturn(
tokenizer,
kl_messages,
examples['system'][i],
examples['tools'][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(
processor, 'image_seq_length'): # paligemma case
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
prompt_ids = [image_token_id] * getattr(
processor, 'image_seq_length') + prompt_ids
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
kl_input_ids = prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
model_inputs['input_ids'].append(input_ids)
model_inputs['attention_mask'].append([1] * len(input_ids))
model_inputs['labels'].append(labels)
model_inputs['kl_input_ids'].append(kl_input_ids)
model_inputs['kl_attention_mask'].append([1] * len(kl_input_ids))
model_inputs['kl_labels'].append(kl_labels)
model_inputs['kto_tags'].append(kto_tag)
if processor is not None:
model_inputs['pixel_values'].append(
preprocess_visual_inputs(examples['images'][i]))
desirable_num = sum([1 for tag in model_inputs['kto_tags'] if tag])
undesirable_num = len(model_inputs['kto_tags']) - desirable_num
if desirable_num == 0 or undesirable_num == 0:
logger.warning('Your dataset only has one preference type.')
return model_inputs
def print_supervised_dataset_example(example: Dict[str, List[int]],
tokenizer: PreTrainedTokenizer) -> None:
print('input_ids:\n{}'.format(example['input_ids']))
print('inputs:\n{}'.format(
tokenizer.decode(example['input_ids'], skip_special_tokens=False)))
print('label_ids:\n{}'.format(example['labels']))
print('labels:\n{}'.format(
tokenizer.decode(
list(filter(lambda x: x != IGNORE_INDEX, example['labels'])),
skip_special_tokens=False,
)))
def print_pairwise_dataset_example(example: Dict[str, List[int]],
tokenizer: PreTrainedTokenizer) -> None:
print('prompt_ids:\n{}'.format(example['prompt_ids']))
print('prompt:\n{}'.format(
tokenizer.decode(example['prompt_ids'], skip_special_tokens=False)))
print('chosen_ids:\n{}'.format(example['chosen_ids']))
print('chosen:\n{}'.format(
tokenizer.decode(example['chosen_ids'], skip_special_tokens=False)))
print('rejected_ids:\n{}'.format(example['rejected_ids']))
print('rejected:\n{}'.format(
tokenizer.decode(example['rejected_ids'], skip_special_tokens=False)))
def print_unsupervised_dataset_example(example: Dict[str, List[int]],
tokenizer: PreTrainedTokenizer) -> None:
print('input_ids:\n{}'.format(example['input_ids']))
print('inputs:\n{}'.format(
tokenizer.decode(example['input_ids'], skip_special_tokens=False)))
def get_preprocess_and_print_func(
data_args: DataArguments,
training_args: Seq2SeqTrainingArguments,
stage: Literal['pt', 'sft', 'rm', 'kto'],
template: Template,
tokenizer: PreTrainedTokenizer,
processor: Optional[ProcessorMixin],
) -> Tuple[Callable, Callable]:
if stage == 'pt':
preprocess_func = partial(
preprocess_pretrain_dataset,
tokenizer=tokenizer,
data_args=data_args,
)
print_function = partial(print_unsupervised_dataset_example,
tokenizer=tokenizer)
elif stage == 'sft' and not training_args.predict_with_generate:
if data_args.packing:
preprocess_func = partial(
preprocess_packed_supervised_dataset,
template=template,
tokenizer=tokenizer,
data_args=data_args,
)
else:
preprocess_func = partial(
preprocess_supervised_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_supervised_dataset_example,
tokenizer=tokenizer)
elif stage == 'rm':
preprocess_func = partial(
preprocess_pairwise_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_pairwise_dataset_example,
tokenizer=tokenizer)
elif stage == 'kto':
preprocess_func = partial(
preprocess_kto_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_supervised_dataset_example,
tokenizer=tokenizer)
else:
preprocess_func = partial(
preprocess_unsupervised_dataset,
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
print_function = partial(print_unsupervised_dataset_example,
tokenizer=tokenizer)
return preprocess_func, print_function