-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
461 lines (385 loc) · 20.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import torch
import torchvision
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
from torchvision.utils import save_image
import torch.nn.functional as F
import scipy.ndimage as spimg
import pyquaternion as quater
import random
import numpy as np
import math
from typing import Optional, Tuple, List
# from data_loader.acdc_dataloader import acdc_gan
# from Adaptive_Motion_Generator.Dataloader.Archive.acdc_dataloader import *
def get_barcode(index=[],header=['Patient','Slice','AugImg','NoiseStep'],digit=[4,6,4,4],split='_'):
# Patient0001_Slice0001_NosieImg0001_NoiseStep0070
barcode_str=''
header=header.copy()
digit=digit.copy()
if len(index)<3:
header[2] = 'ORG'
header[3] = 'NA'
digit[2] = 0
digit[3] = 0
index +=['','']
for id, h in enumerate(header):
barcode_str+=h+str(index[id]).zfill(digit[id])+split
return barcode_str[:-1]
class RandomResizedCrop3D(nn.Module):
"""Crop a random portion of a 3D volume and resize it to a given size.
Args:
size (tuple of int): Expected output size of the crop, for each dimension (D, H, W).
scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
before resizing. The scale is defined with respect to the volume of the original image.
ratio (tuple of float): Lower and upper bounds for the random aspect ratio of the crop, before resizing.
interpolation (str): Desired interpolation mode ('trilinear' or 'nearest').
"""
def __init__(
self,
size: Tuple[int, int, int],
scale=(0.6, 1.0),
ratio=(0.5, 1.5),
interpolation='trilinear'
):
super().__init__()
self.size = size
self.scale = scale
self.ratio = ratio
self.interpolation = interpolation
@staticmethod
def get_params(img: torch.Tensor, rand_scale: float, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int, int, int]:
"""Get parameters for `crop` for a random sized crop.
Args:
img (Tensor): Input image.
scale (list): Range of scale of the origin size cropped.
ratio (list): Range of aspect ratio of the origin aspect ratio cropped.
Returns:
tuple: params (i, j, k, d, h, w) to be passed to `crop` for a random sized crop.
"""
img_sz = np.array(list(img.size())[2:])
crop_sz = (img_sz * rand_scale).astype(np.int32) #[int(s*rand_scale) for s in img_sz]
start_id = np.random.randint(0, img_sz - crop_sz + 1, size=(img_sz.size,))
return start_id.tolist()+crop_sz.tolist()
# volume = depth * height * width
#
# log_ratio = torch.log(torch.tensor(ratio))
# for _ in range(10):
# target_volume = volume * torch.empty(1).uniform_(*scale).item()
# aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
#
# w = int(round(math.sqrt(target_volume * aspect_ratio)))
# h = int(round(math.sqrt(target_volume / aspect_ratio)))
# d = int(round(math.sqrt(target_volume / (w * h))))
#
# if 0 < w <= width and 0 < h <= height and 0 < d <= depth:
# i = torch.randint(0, depth - d + 1, size=(1,)).item()
# j = torch.randint(0, height - h + 1, size=(1,)).item()
# k = torch.randint(0, width - w + 1, size=(1,)).item()
# return i, j, k, d, h, w
#
# # Fallback to central crop
# return (depth - d) // 2, (height - h) // 2, (width - w) // 2, d, h, w
def forward(self, img: torch.Tensor) -> torch.Tensor:
"""Apply the RandomResizedCrop transformation.
Args:
img (Tensor): Input 3D image.
Returns:
Tensor: Cropped and resized image.
"""
rand_scale = np.random.uniform(self.scale[0], self.scale[1])
[i, j, k, d, h, w] = self.get_params(img,rand_scale, self.scale, self.ratio)
# print(i, j, k, d, h, w)
img_cropped = img[:, :, i:i + d, j:j + h, k:k + w]
# print(img_cropped.shape)
img_resized = F.interpolate(img_cropped, size=self.size, mode=self.interpolation,
align_corners=False if self.interpolation == 'trilinear' else None)
return img_resized#.squeeze(0)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size}, scale={self.scale}, ratio={self.ratio}, interpolation={self.interpolation})"
def random_permute(X, select_dims=[-1,-2],include_flip=True):
axes=list(range(X[0].ndim))
selected_axes = [axes[i] for i in select_dims]
random.shuffle(selected_axes)
for i, dim in enumerate(select_dims):
axes[dim] = selected_axes[i]
if include_flip and random.choice([True,False]):
# X = [np.flip(x, axis=dim) for x in X]
X = [torch.flip(x, [dim]) for x in X]
# return [np.transpose(x,axes) for x in X]
return [x.permute(axes) for x in X]
# def thresh_img(img,thresh = None,EPS = 10**-7):
# threshold0 = np.random.uniform(thresh[0], thresh[1])
# threshold1 = np.random.uniform(thresh[0], thresh[1])
# scale =
# if threshold is not None:
# # img=img-threshold
# # img=np.where(img>=0,img,0)
# # img = np.maximum(img-threshold,0)
# img = torch.maximum(img - threshold,torch.tensor(0.))
# # return (img - img.min()) / (img.max() - img.min() + EPS)
# return img
def get_transformer(degrees=180,translate=0.125,ndims=2,prob=0.8,fill=0.,img_sz=None):
prob_crop=0. if img_sz==None else 0.8
# prob_crop=0. if len(img_sz)==2 else 0.8
if img_sz==None or len(img_sz)==2:
return torchvision.transforms.Compose([
torchvision.transforms.RandomApply([
torchvision.transforms.RandomAffine(degrees=degrees, translate=[translate] * ndims, fill=fill,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR),
],prob),
# torchvision.transforms.RandomApply([
# torchvision.transforms.RandomResizedCrop(size=img_sz),
# ], prob_crop),
torchvision.transforms.RandomVerticalFlip(p=0.5),
torchvision.transforms.RandomAutocontrast(p=0.5),
])
else:
return torchvision.transforms.Compose([
torchvision.transforms.RandomApply([
torchvision.transforms.RandomResizedCrop(size=img_sz) if len(img_sz) == 2 else RandomResizedCrop3D(
size=img_sz),
], prob_crop),
])
def get_random_affine_transformer(degrees=180,translate=0.125,ndims=2):
return torchvision.transforms.RandomAffine(degrees=degrees, translate=[translate] * ndims,interpolation=torchvision.transforms.InterpolationMode.BILINEAR)
def channel_merge_acdc(img):
# input: a torch tensor (C,H,W)
ch = img.shape[0]
output = np.zeros((img.shape[1], img.shape[2]))
# output[img[2,:,:] == 1] = 1
for i in range(ch):
output= output + img[i]
return output
def img_crop(img, crop_rate=2, img_sz=[256,256]):
ndims=len(img_sz)
crop = [np.random.randint(0.*imgs, 1. * imgs)//crop_rate for imgs in img_sz]
crop = [crop, [1 * imgs//crop_rate - c for imgs, c in zip(img_sz, crop)]]
if ndims==2:
return img[..., crop[0][0]: img_sz[0] - crop[1][0], crop[0][1]: img_sz[1] - crop[1][1]]
else:
return img[..., crop[0][0]: img_sz[0] - crop[1][0], crop[0][1]:img_sz[1] - crop[1][1], crop[0][2]: img_sz[2] - crop[1][2]]
def boundary_limit(sample_coords0, max_sz, plus=0., minus=1.):
sample_coords = torch.split(sample_coords0, split_size_or_sections=1, dim=1)
# return tf.stack([tf.maximum(tf.minimum(x, sz - minus + plus), 0 + plus) for x, sz in zip(sample_coords, input_size0)],-1)
return torch.cat([torch.clamp(x * sz, min=minus - 1 * sz + plus, max=1 * sz - minus + plus) for x, sz in
zip(sample_coords, max_sz)], 1)
def resample(vol, ddf, ref=None, img_sz=None,max_sz=[128,128],ndims=2):
device = vol.device
img_sz = vol.size()[2:]
ndims=len(img_sz)
if ndims==2:
[h,w]=img_sz
img_shape = torch.reshape(torch.tensor([(h - 1) / 2., (w - 1) / 2.], device=device), [1, 1, 1, ndims])
ref_grid = torch.reshape(torch.stack(torch.meshgrid([torch.arange(end=h), torch.arange(end=w)]), 0), [1, ndims,h, w ])
elif ndims==3:
[h, w, d] = img_sz
img_shape = torch.reshape(torch.tensor([(h - 1) / 2., (w - 1) / 2., (d-1)/2], device=device), [1, 1, 1, 1, ndims])
ref_grid = torch.reshape(torch.stack(torch.meshgrid([torch.arange(end=h), torch.arange(end=w), torch.arange(end=d)]), 0), [1, ndims,h, w, d])
# ref_grid.to(device)
# img_shape.to(device)
# ddf.to(device)
# ref = self.ref_grid if ref is None else ref
# img_sz = self.img_sz if img_sz is None else img_sz
resample_mode = 'bilinear'
# padding_mode = "border"
padding_mode = "zeros"
# img_sz = np.reshape(img_sz, [1] *(ndims+1)+[ndims])
# if ndims==2:
if True:
re=[0]+list(range(2,ndims+2))+[1]
# re=list(range(ndims+2))
# print((torch.flip((ddf.to(device) + ref_grid.permute(re))/ img_shape - 1, dims=[-1])).tolist())
return F.grid_sample(vol, torch.flip((ddf + ref_grid.permute(re).to(device))/ img_shape - 1, dims=[-1]).type(torch.float32).to(device), mode=resample_mode, padding_mode=padding_mode,align_corners=True)
#
# return F.grid_sample(vol, torch.flip(
# torch.permute(ddf * torch.Tensor(np.reshape(np.array(max_sz), [1, 1, 1, ndims])) + ref_grid,
# [0, 2, 3, 1]) / img_shape - 1, dims=[-1]), mode=resample_mode, padding_mode=padding_mode,
# align_corners=True)
def random_resample(vol,deform_scale=32.):
vol_size=vol.size()
device=vol.device
ndims = len(vol_size)-2
img_size=[s for s in vol_size[2:]]
if ndims==2:
img_size=img_size+[16]
# ddf,_,_=random_ddf(vol_size[0],img_size)
_,_,ddf=random_ddf(vol_size[0],img_size,ndims=ndims,range_gauss=deform_scale)
ddf=Variable(torch.tensor(ddf,dtype=torch.float32)).to(device)
if ndims==2:
return resample(vol,ddf[...,8,:ndims])
else:
return resample(vol, ddf[..., :ndims])
# grid option
def get_tranf_mat(grid_size, vec=[[0., 0., 1.]], ang=[[0.]],transl=[[0,0,0]]):
return np.concatenate([get_rot_mat(grid_size, vec=vec, ang=ang),transl],-1)
def get_rot_mat(grid_size, vec=[[0., 0., 1.]], ang=[[0.]],ndims=3):
vec = np.array(vec)
ang = np.array(ang)
batch_num = ang.shape[0]
return np.reshape(vecang2rotmats(vec, ang), [batch_num] + [ndims*(ndims)])
def random_mat(batch_sz, img_sz, num_class=2,pn_spline=20, pn_gauss=10, range_spline=2., range_gauss=48, spread_range=[5., 24.],
transl_range=32., rot_range=np.pi / 2):
scale=4
ndims=3
vec=np.reshape(np.random.uniform(-1., 1., [batch_sz,1, ndims])+np.random.uniform(-.1, .1, [batch_sz,num_class, ndims]),[batch_sz*num_class, ndims])
ang=np.reshape(np.random.uniform(-rot_range, rot_range, [batch_sz,1])+np.random.uniform(-rot_range/scale, rot_range/scale, [batch_sz,num_class]),[batch_sz*num_class])
transl=np.reshape(np.random.uniform(-transl_range, transl_range, [batch_sz,1,ndims])+np.random.uniform(-transl_range/scale, transl_range/scale, [batch_sz,num_class,ndims]),[batch_sz*num_class,ndims])
return np.reshape(np.concatenate([get_rot_mat(img_sz, vec=vec, ang=ang),transl],-1),[batch_sz,num_class,4,3])
# return np.reshape(get_tranf_mat(img_sz, vec=np.random.uniform(-1., 1., [batch_sz*num_class, 3]), ang=np.random.uniform(-rot_range, rot_range, [batch_sz*num_class]),transl=np.random.uniform(-transl_range, transl_range, [batch_sz*num_class,3])),[batch_sz,num_class,4,3])
def random_ddf(batch_sz, img_sz, pn_spline=20, pn_gauss=10, range_spline=1., range_gauss=16., spread_range=[16., 64.],
transl_range=0., rot_range=np.pi / 1,ndims=3):
rand_ang=np.random.uniform(-rot_range, rot_range, [batch_sz])
# rand_ang = np.random.randint(-4, 4, [batch_sz])*rot_range
if ndims==3:
rot_df = get_rot_ddf(img_sz, vec=np.random.uniform(-1., 1., [batch_sz, 3]),
ang=rand_ang)
else:
rot_df = get_rot_ddf(img_sz, vec=np.concatenate([np.zeros([batch_sz, 2]),np.ones([batch_sz, 1])],-1),
ang=rand_ang)
ndims = 3
# rot_df = +np.random.uniform(-1., 1., [batch_sz, ndims,ndims])
# ddf0=np.stack([generate_random_gaussian_ddf(img_sz, pn_gauss, range_sz=range_gauss, spread_std=spread_range)\
# +generate_random_spline_ddf(img_sz, pn_spline, range_sz=range_spline)\
# +np.random.uniform(-transl_range,transl_range,[3]) for i in range(batch_sz)],axis=0)\
# +rot_df
if range_gauss>0:
ddf0 = np.tile([generate_random_gaussian_ddf(img_sz, pn_gauss, range_sz=range_gauss, spread_std=spread_range) \
# + generate_random_spline_ddf(img_sz, pn_spline, range_sz=range_spline) \
+ np.random.uniform(-transl_range, transl_range, [ndims])], [batch_sz, 1, 1, 1, 1]) \
+ rot_df
else:
ddf0 = rot_df
def boundary_replicate(sample_coords, input_size, padding=5):
return np.stack(
[np.maximum(np.minimum(sample_coords[..., i], input_size[i] - 1 + padding), 0 - padding) for i in
range(len(input_size))], axis=-1), \
np.prod([((sample_coords[..., i] < input_size[i]) * (sample_coords[..., i] >= 0)) for i in
range(len(input_size))], axis=0)
ref = get_reference_grid(img_sz)
cf1, ind = boundary_replicate(ddf0 + ref, img_sz)
return cf1 - ref, np.expand_dims(ind, -1), rot_df
def generate_random_gaussian_ddf(img_sz, pn=30, range_sz=5, spread_std=[0.1, 1.]):
x = np.floor(np.random.uniform(range_sz / 2., img_sz[0] - range_sz / 2., [1, pn])).astype('int')
y = np.floor(np.random.uniform(range_sz / 2., img_sz[1] - range_sz / 2., [1, pn])).astype('int')
z = np.floor(np.random.uniform(range_sz / 2., img_sz[2] - range_sz / 2., [1, pn])).astype('int')
odf = np.random.uniform(-range_sz, range_sz, [pn, 3])
vol = np.zeros([img_sz[0], img_sz[1], img_sz[2], 3])
vol[x, y, z] = odf
return spimg.gaussian_filter(vol, np.random.uniform(spread_std[0], spread_std[1]))
def get_rot_ddf(grid_size, vec=[[0., 0., 1.]], ang=[[0.]]):
vec = np.array(vec)
ang = np.array(ang)
batch_num = ang.shape[0]
ref_grids = get_reference_grid(grid_size,
bias_scale=1.)
# a=vecang2rotmats(vec, ang)
return np.reshape(np.matmul(np.reshape(np.tile(ref_grids, [batch_num, 1, 1, 1, 1]), [batch_num, -1, 3]),
vecang2rotmats(vec, ang)), [batch_num] + grid_size + [3]) - ref_grids
def get_reference_grid(grid_size, bias_scale=0.):
return np.stack(np.meshgrid(
[i for i in range(grid_size[0])],
[j for j in range(grid_size[1])],
[k for k in range(grid_size[2])],
indexing='ij'), axis=-1).astype('float') - bias_scale * (np.array(grid_size) - 1) / 2.
def resample_linear(inputs, ddf=None, sample_coords=None,random_boundary=True):
if random_boundary:
random_factor = np.random.uniform(0., 1.)
min_val = np.min(inputs)
inputs[:, 0, :, :] = min_val * random_factor + (1 - random_factor) * inputs[:, 0, :, :]
inputs[:, -1, :, :] = min_val * random_factor + (1 - random_factor) * inputs[:, -1, :, :]
inputs[:, :, 0, :] = min_val * random_factor + (1 - random_factor) * inputs[:, :, 0, :]
inputs[:, :, -1, :] = min_val * random_factor + (1 - random_factor) * inputs[:, :, -1, :]
inputs[:, :, :, 0] = min_val * random_factor + (1 - random_factor) * inputs[:, :, :, 0]
inputs[:, :, :, -1] = min_val * random_factor + (1 - random_factor) * inputs[:, :, :, -1]
input_size = inputs.shape[1:4]
sample_coords = get_reference_grid(input_size) + ddf if sample_coords is None else sample_coords
spatial_rank = 3 # inputs.ndim - 2
xy = [sample_coords[..., i] for i in
range(sample_coords.shape[-1])] # tf.unstack(sample_coords, axis=len(sample_coords.shape)-1)
index_voxel_coords = [np.floor(x) for x in xy]
def boundary_replicate(sample_coords0, input_size0, plus=0):
return np.maximum(np.minimum(sample_coords0, input_size0 - 2 + plus), 0 + plus)
def boundary_replicate_float(sample_coords0, input_size0, plus=0.):
return np.maximum(np.minimum(sample_coords0, input_size0 - 1 + plus), 0 + plus)
xy = [boundary_replicate_float(x.astype('float32'), input_size[idx]) for idx, x in enumerate(xy)]
spatial_coords = [boundary_replicate(x.astype('int32'), input_size[idx])
for idx, x in enumerate(index_voxel_coords)]
spatial_coords_plus1 = [boundary_replicate((x + 1).astype('int32'), input_size[idx], 1)
for idx, x in enumerate(index_voxel_coords)]
weight = [np.expand_dims(x - i.astype('float32'), -1) for x, i in zip(xy, spatial_coords)]
weight_c = [np.expand_dims(i.astype('float32') - x, -1) for x, i in zip(xy, spatial_coords_plus1)]
sz = list(spatial_coords[0].shape)
batch_coords = np.tile(np.reshape(range(sz[0]), [sz[0]] + [1] * (len(sz) - 1)), [1] + sz[1:])
sc = (spatial_coords, spatial_coords_plus1)
binary_codes = [[int(c) for c in format(i, '0%ib' % spatial_rank)] for i in range(2 ** spatial_rank)]
make_sample = lambda bc: inputs[batch_coords, sc[bc[0]][0], sc[bc[1]][1], sc[bc[2]][
2], ...] # tf.gather_nd(inputs, np.stack([batch_coords] + [sc[c][i] for i, c in enumerate(bc)], -1))
samples = [make_sample(bc) for bc in binary_codes]
def pyramid_combination(samples0, weight0, weight_c0):
if len(weight0) == 1:
return samples0[0] * weight_c0[0] + samples0[1] * weight0[0]
else:
return pyramid_combination(samples0[::2], weight0[:-1], weight_c0[:-1]) * weight_c0[-1] + \
pyramid_combination(samples0[1::2], weight0[:-1], weight_c0[:-1]) * weight0[-1]
return pyramid_combination(samples, weight, weight_c)
def vecang2rotmats(vec, ang):
return np.stack([np.reshape(vecang2rotmat(vec[i, ...], ang[i, ...]), [3, 3]) for i in range(len(vec))], 0)
def vecang2rotmat(vec, ang):
q = quater.Quaternion(axis=vec, angle=ang)
return q.rotation_matrix
def images_to_vectors(images):
return images.view(images.size(0), 16384).to(device)
def vectors_to_images(vectors):
return vectors.view(vectors.size(0), 1, 128, 128).to(device)
def noise(size):
n = Variable(torch.randn(size, 100)).to(device)
return n
def ones_target(size):
data = Variable(torch.ones(size, 1)).to(device)
return data
def zeros_target(size):
data = Variable(torch.zeros(size, 1)).to(device)
return data
def eval_detJ_lab(disp=None,vol1=None,vol2=None,thresh=0.5):
ndims=disp.ndim-2
if vol1 ==None or thresh==None:
label=1
else:
label=vol1>thresh
label=label*(spimg.laplace(label) < 0.1)
rescale_factor=2
label=label[...,::rescale_factor,::rescale_factor,::rescale_factor]
# disp = disp.permute([0, *range(2,ndims+2), 1])
# print(disp.shape)
disp = np.transpose(disp, [0, *range(2,ndims+2), 1])
# Jacob=np.stack(np.gradient(disp,axis=[-4,-3,-2]),-1)
Jacob=np.stack(np.gradient(disp,axis=[*range(1,ndims+1)]),-1)
for ii in range(ndims):
Jacob[..., ii, ii] = Jacob[..., ii, ii] + 1
# Jacob[..., 0, 0] = Jacob[..., 0, 0] + 1
# Jacob[..., 1, 1] = Jacob[..., 1, 1] + 1
# Jacob[..., 2, 2] = Jacob[..., 2, 2] + 1
return np.sum((np.linalg.det(Jacob)<0)*label)
def eval_def_mag(disp=None,vol1=None,vol2=None,thresh=0.5):
ndims=3
# if vol1 ==None or thresh==None:
# label=1
# else:
# label=vol1>thresh
# label=label*(spimg.laplace(label) < 0.1)
# rescale_factor=2
# label=label[...,::rescale_factor,::rescale_factor,::rescale_factor]
mag=np.sqrt(np.sum(np.square(disp),axis=1))
sz=mag.shape
max_mag=np.mean(np.max(np.reshape(mag,[sz[0],-1]),axis=-1))
avg_mag=np.mean(mag)
return [avg_mag,max_mag]
vol=np.random.uniform(-1,1,[4,1,256,256])
vol=Variable(torch.tensor(vol,dtype=torch.float32))
vol_res=random_resample(vol)
vol_crop=img_crop(vol_res)
# print(vol.tolist())
# print(vol_res.tolist())