forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrpn_r50_fpn_1x_coco.py
36 lines (33 loc) · 1.14 KB
/
rpn_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
_base_ = [
'../_base_/models/rpn_r50_fpn.py', '../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
val_evaluator = dict(metric='proposal_fast')
test_evaluator = val_evaluator
# inference on val dataset and dump the proposals with evaluate metric
# data_root = 'data/coco/'
# test_evaluator = [
# dict(
# type='DumpProposals',
# output_dir=data_root + 'proposals/',
# proposals_file='rpn_r50_fpn_1x_val2017.pkl'),
# dict(
# type='CocoMetric',
# ann_file=data_root + 'annotations/instances_val2017.json',
# metric='proposal_fast',
# backend_args={{_base_.backend_args}},
# format_only=False)
# ]
# inference on training dataset and dump the proposals without evaluate metric
# data_root = 'data/coco/'
# test_dataloader = dict(
# dataset=dict(
# ann_file='annotations/instances_train2017.json',
# data_prefix=dict(img='train2017/')))
#
# test_evaluator = [
# dict(
# type='DumpProposals',
# output_dir=data_root + 'proposals/',
# proposals_file='rpn_r50_fpn_1x_train2017.pkl'),
# ]